Dynamic Interventions and Informational Linkages

Lin William Cong
University of Chicago, Booth School of Business

Steven Grenadier
Stanford University

Yunzhi Hu
University of Chicago

Fama-Miller Center for Research in Finance
The University of Chicago, Booth School of Business

This paper also can be downloaded without charge from the Social Science Research Network Electronic Paper Collection
Dynamic Interventions and Informational Linkages*

Lin William Cong† Steven Grenadier‡ Yunzhi Hu§

First Draft: September 20, 2015
This Draft: June 12, 2017

Abstract

We model a dynamic economy with strategic complementarity among investors and endogenous government interventions that mitigate coordination failures. We establish equilibrium existence and uniqueness, and show that one intervention can affect another through altering the public-information structure. A stronger initial intervention helps subsequent interventions through increasing the likelihood of positive news, but also leads to negative conditional updates. Our results suggest optimal policy should emphasize initial interventions when coordination outcomes tend to correlate. Neglecting informational externalities of initial interventions results in over- or under-interventions, depending on intervention costs. Moreover, saving smaller funds before saving the big ones costs less and generates greater informational benefits under certain circumstances. Our paper is informative of multiple intervention programs such as those enacted during the 2008 financial crisis.

Keywords: Coordination, Intervention, Dynamic Policy, Learning, Information Design, Global Games

*Previously titled “Intervention Policy in a Dynamic Environment: Coordination and Learning”. The authors would like to thank Douglas Diamond, Itay Goldstein, Zhiguo He, Stephen Morris, Xavier Vives, and Pavel Zryumov for their invaluable feedback. The authors also thank Alex Frankel, Pingyang Gao, Anil Kashyap, Yao Zeng, and seminar participants at Chicago Booth, CKGSB, EPLF, FTG Conference, Peking U, Guanghua, HEC Lausanne, SFI, SHUFE, USC Marshall, AFA, Wharton Liquidity Conference, Auckland Finance Conference, and the Econometric Society Asia Meeting for helpful comments. This research was funded in part by the Fama-Miller Center for Research in Finance at the University of Chicago Booth School of Business. All remaining errors are ours.

†University of Chicago Booth School of Business. Authors Contact: Will.Cong@ChicagoBooth.edu.
‡Stanford University Graduate School of Business
§University of Chicago, Department of Economics and Booth School of Business.
1 Introduction

Coordination failures are prevalent and socially costly. Effective interventions may ameliorate such damaging outcomes. For example, financial systems, especially short-term credit markets, are vulnerable to liquidity shocks and runs by investors. The 2008 financial crisis witnessed a series of runs on both financial and non-financial institutions. In response, governments and central banks around the globe employed an array of policy actions over time. Given the novelty, the scale, the cost, and the intertwined nature of such interventions, a study of how endogenous interventions relate to each other is natural.

More broadly, how should a government formulate intervention policy in a dynamic economy with strategic complementarity? How does intervention in one institution or market affect subsequent interventions in other institutions or markets? This paper tackles these questions by modeling the government as a large player in sequential global games and focusing on information transmission from one intervention to another. We have the following findings. First, an intervention not only improves welfare contemporaneously, but also affects agents’ future coordination game and thus future interventions. Consequently, when intervention costs are comparable across coordination games, optimal policy often features an emphasis on the initial intervention. Second, decision makers for one intervention may not internalize the informational externality of the intervention outcome on other interventions, and thus may over- or under intervene, depending on the intervention costs. Third, an optimal policy may entail saving smaller funds first before saving larger ones. Such a policy generates an information structure with lower cost but greater benefits. The insights apply to situations with multiple interventions in which agents’ actions exhibit strategic complementarity. Examples include interventions in currency attacks, bank runs, real estate programs, cross-sector industrialization, and technology subsidy programs.

We introduce the model in the context of runs on Money Market Mutual Funds (MMMFs) in September 2008 and subsequently on commercial papers, both triggered by investors’ interpretation of Lehman’s failure as a revelation of the credit risk and systemic illiquidity of commercial papers. The initial successful intervention with unlimited insurance to all

\[1\text{The run on commercial papers is primarily in financial commercial papers as opposed to ABCPs, according to Kacperczyk and Schnabl (2010).}\]
MMMFM depositors and the Asset-Backed Commercial Paper Money Market Mutual Fund Liquidity Facilities (AMLF) arguably affected how investors reacted to later interventions in the commercial paper market, such as the Commercial Paper Funding Facility (CPFF) program.2 Another context that motivates the study is the federal government’s multiple attempts at stabilizing the housing market in a wide range of regions through the Neighborhood Stabilization Programs (NSPs) of 2008-2010.3 These interventions provided funding for local housing authorities to purchase, renovate, and sell foreclosed properties in an effort to moderate the sizeable declines in home prices driven by the massive wave of foreclosures during the credit crisis.4 Because the intervention outcomes were revealed gradually over time, and housing markets across neighborhoods share common components, people update their priors on the underlying health of housing markets from initial intervention outcomes, and behave differently in the local program.

Specifically, in a two-period economy, a group of atomistic investors in each period choose whether to run or remain invested in a fund.5 Running guarantees a higher payoff if the fund fails, whereas staying pays more if the fund survives. The fund survives if and only if the total measure of investors who choose to stay is above a fundamental threshold θ – interpreted as an unhedgeable system-wide illiquidity shock or the persistent quality of the underlying investment, and is identical across the two periods. Following the global-games framework, θ in each period is unobservable and each investor receives a noisy signal. Prior literature has established that in static settings, a unique equilibrium exists in which the fund survives as long as the true θ is below a threshold θ^*, and each investor stays if and only if his private signal is below a certain threshold x^*.

We then incorporate policy responses in a crisis and the formation of expectations by

2See Schmidt, Timmermann, and Wermers (2016) for more details on the run on MMMFs. As discussed in Bernanke (2015), page 283, the government was keenly aware that AIG’s failure might affect market participants’ beliefs and lead to runs in other markets, just like Lehman’s commercial paper had triggered the run on money market funds.

3See Westrupp (2017) for a summary of the NSP and its impact on mitigating foreclosure externalities.

4One may view regional foreclosures as broadly analogous to “runs” due to the negative externality of a particular foreclosure on the values of neighboring properties. For example, Campbell, Giglio, and Pathak (2011) document a negative spillover effect of 1% per new foreclosure within a 0.10-mile radius. Guiso, Sapienza, and Zingales (2013) document the prevalence of strategic defaults during this period.

5In our context, running on the fund in the first period corresponds to the run on MMMFs, and running in the second period corresponds to the run in the financial commercial papers’ market.
modeling interventions in our baseline setup as direct liquidity injections into funds experiencing runs. The equilibrium θ^* increases strictly with the size of the government’s intervention m: a greater liquidity injection makes the fund more likely to survive. Therefore, in a static economy, a benevolent government trades off this contemporaneous benefit and intervention costs.

In a dynamic setting, government intervention in the first period alters the informational environment in the second period. Indeed, agents’ prior beliefs on θ are truncated, because whether a run occurs during the first period is public information. When the fund has survived in the first period, agents learn $\theta_1 < \theta_1^*$, and their belief on θ shifts downward, making coordination easier. The opposite holds if the fund has failed in the first period. To the extent this public signal is useful, initial success increases the likelihood of subsequent success, and initial failure increases the likelihood of subsequent failure, endogenously giving rise to the greater tendency for the correlation of coordination outcomes across different periods (endogenous correlation effect). Initial intervention is thus more important because it increases the probability of survival in both periods.

However, initial intervention also has an informational cost, and thus its magnitude must be tempered. When a large intervention leads to a fund’s survival, investors may infer the outcome is due to the intervention itself and not strong fundamentals. Conversely, if the fund fails despite a large initial intervention, investors become even more pessimistic about the market’s fundamentals. This conditional inference effect harms investors’ welfare and drives the government to intervene less for more favorable conditional updates. Therefore, the optimal policy has to consider the initial intervention’s informational effect and trade off the two competing forces: intervening more to increase the likelihood of good news (truncating θ from above), and intervening less initially to encourage more favorable conditional updates (lower θ^*).

We establish results on the existence and uniqueness of equilibrium and study the impli-

6Many crisis interventions are indeed direct liquidity injections. For example, Duygan-Bump, Parkinson, Rosengren, Suarez, and Willen (2013) discuss how AMLF and CPFF were essentially liquidity injections that alleviated funds’ pressure to meet redemptions without suffering fire sales. Other examples include the Economic Stimulus Act of 2008 that reduced firms’ tax obligations directly, or TARP, which intended to improve the liquidity of hard-to-value assets through secondary-market mechanisms. In Section 5.7, we discuss how our setup nests other forms of intervention.
cations for the optimal policy of a benevolent government. When the intervention costs are comparable in the sense that the endogenous intervention amounts are similar even absent public learning, the endogenous correlation effect dominates. Optimal policy then generally emphasizes initial intervention—the scale of intervention in the first period always exceeds that in the second period—to kill two birds with one stone (improving fund survival in both periods).

This result also implies that a decision maker who neglects the informational externality of one intervention on another would under-intervene initially. However, when the intervention costs across the two periods differ drastically, so much so that survival in the first period does not guarantee survival in the second period (when the second-period cost is too high relative to the first and private signals are relevant for the marginal investor), nor does failure lead to failure (when the second-period cost is so low that one can intervene more despite the negative update from the first period’s failure), the conditional inference effect can dominate. The more the government considers the informational externality, the more it shades intervention. This result also applies to countries and regions sharing common fundamentals in which one country’s investors learn from another country’s intervention outcome. In that sense, a global social planner (e.g., the European Union) could have a role in mitigating inefficient interventions in member countries or states.

Finally, when the government endogenously decides the order of interventions in funds of different sizes, the larger fund is “too big to save first,” because it costs less to intervene in the smaller fund first in order to induce the same updating on the fundamentals, and the larger fund benefits more from the reduced uncertainty. This result complements studies on institutions deemed to be “too big to fail” in that though bigger funds could be systemically important, they are generally not the best targets in an initial intervention.

This paper contributes to our understanding of how interventions shape the informational environment during a crisis, and hence is useful for studying and assessing policies that aim to avoid inefficient outcomes. In particular, we highlight the role of government intervention on information structure: it not only affects the probability of good news versus bad news, but also the informativeness of news.7 It thus complements existing work on government

7 Bernanke and Geithner spoke of the financial crisis as a bank run and emphasized the need to combat a financial crisis with the “use of overwhelming force to quell panics” (p. 397, Geithner (2014)), a tactic
interventions in markets with strategic complementarity.8 For example, Acharya and Thakor (2014) consider how liquidation decisions by informed creditors of one bank signal systematic shocks to other creditors and create contagions, and how selective bailout signal systematic shocks could be efficient when the regulator observes the systematic shock. Huang (2016) studies how the interaction between a policy maker’s reputation building and speculators’ learning of the policy maker’s type determines speculative attacks and regime changes. Regarding the design of intervention policy, Bebchuk and Goldstein (2011) examine the effectiveness of various forms (rather than the extent) of exogenous government policies in avoiding self-fulfilling credit market freezes. Sakovics and Steiner (2012) analyze who matters in coordination failures and how to set intervention targets. Choi (2014) shows the importance of bolstering stronger financial institutions to prevent contagion. Like these studies that focus on one particular aspect of intervention, we demonstrate how information-structure design should play an important role in formulating intervention policies, and should be considered together with previously discussed factors. In addition, this paper concerns the dynamic interaction of multiple endogenous interventions under general cost functions.

This paper is also related to global games and equilibrium selection (Carlsson and Van Damme, 1993; Morris and Shin, 1998), especially in dynamic settings (Frankel and Pauzner, 2000; Angeletos, Hellwig, and Pavan, 2007), with the government as a large player (Corsetti, Dasgupta, Morris, and Shin, 2004; Angeletos, Hellwig, and Pavan, 2006). Our paper adds to earlier studies by explicitly modeling the government as a large player that endogenously selects coordination equilibrium through both static and dynamic channels. Thus, we provide theoretical insights on how endogenous interventions relate to one another. Different from Angeletos, Hellwig, and Pavan (2006) who demonstrate that endogenous intervention signals government type and leads to equilibrium multiplicity, our paper explores how endogenous intervention shapes information structure rather than signaling of “shock and awe” that often connotes managing market expectations by the government. The regulator’s concern implies not only do the financial networks matter for intervention policies, information structure also plays a crucial role in coordination. Although isolating the informational aspect from systemic connectedness is challenging, it was an important element of both the Lehman Brothers episode and the Eurozone bank bailouts in 2010 and 2011.

8Strategic complementarity in financial markets is well-recognized in prior literature such as Diamond and Dybvig (1983), and more recently by empirical studies, including Chen, Goldstein, and Jiang (2010) and Hertzberg, Liberti, and Paravisini (2011).
government’s private information. This paper is also related to Angeletos, Hellwig, and Pavan (2007) who extend global games to a dynamic setup in which agents take actions over multiple periods and can learn about the fundamental over time. The authors point out that multiplicity resurfaces from the interaction between endogenous learning based on regime survivals and exogenous learning induced by private news arrivals.\footnote{The Bayesian learning from public signals without endogenous government actions has also been discussed in several other papers. For example, Manz (2010) studies information contagion; Ahnert and Bertsch (2015) study information choice and contagion after wake-up-calls; Taketa (2004), studies contagion via a common investor base; Li and Ma (2016) study contagion and fire sales after a bank run.} We introduce endogenous interventions, which lead to endogenous equilibrium multiplicity and selection, and show that the policy and public learning feed back each other and have profound implications on the optimal policy design and coordination outcomes. We also demonstrate that either shutting down the interaction of public learning and private learning or reducing the private-signal precision would restore uniqueness in the dynamic setting.

Finally, this paper adds to the emerging literature on finance applications of information design and Bayesian persuasion (e.g. Gentzkow and Kamenica (2011); Bergemann and Morris (2017)). In particular, it is related to Goldstein and Huang (2016), in which policymakers costlessly and endogenously design information in a coordination game. The authors focus on a one-shot intervention in which the government commits to a regime-change policy to increase the probability of the survival of the status quo. The information transmission relies on the truncation of beliefs as in Angeletos, Hellwig, and Pavan (2007), but is endogenous, and does not concern multiple coordination games. Lenkey and Song (2016) also analyzes the tradeoffs in information design to study how a redemption fee affects runs on financial institutions when investors are asymmetrically informed about fundamentals. Our paper adds to both Goldstein and Huang (2016) and Lenkey and Song (2016) by introducing costly information design and underscoring its role in determining optimal information structure and policy (as well as characterizing the tradeoffs in information design more analytically). To our best knowledge, we are the first to derive implications of informational link between multiple endogenous interventions, and the endogenous correlation effect of information design and the role of relative intervention costs are entirely new.

The rest of the paper is organized as follows: Section 2 lays out the basic framework and
establishes a static benchmark. Section 3 characterizes the equilibrium in dynamic settings. Section 4 solves for the optimal policy and presents its implications. Section 5 discusses the results and extends the model. Section 6 concludes.

2 Model

This section introduces the model with a representative intervention form: government directly infusing liquidity into funds subject to runs in each period. We start by analyzing a static model as our benchmark in Section 2.1 and move to the dynamic setting in Section 2.2.

2.1 Static Benchmark

2.1.1 Model setup

A fund has a continuum of investors indexed by i and normalized to unit measure. Each investor has 1 unit of capital invested in the fund, and simultaneously chooses between two actions: stay ($a_i = 1$) or withdraw ($a_i = 0$). For the remaining analysis, we interpret withdrawal as “run” on the fund, and staying can be interpreted as rolling over short-term debts. The net payoff from running on the fund and investing the proceeds in an alternative vehicle (e.g. a treasury bill) is always equal to r, whereas the payoff to each investor from staying is R if the fund survives the run ($s = S$), and 0 if the fund fails ($s = F$). Let $R > r > 0$; then an investor finds it optimal to stay if and only if she expects the probability of survival to exceed the cost of illiquidity, defined as $c \equiv \frac{r}{R}$. Table 1 (left panel) shows the net payoff of each action under different states and actions. In the right panel of Table 1, we normalize the payoff matrix by subtracting r and scaling by $\frac{1}{R}$. For notational convenience, we use the normalized net payoffs for the remainder of the paper.

<table>
<thead>
<tr>
<th>Survive</th>
<th>Stay</th>
<th>Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fail</td>
<td>R</td>
<td>r</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>r</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Survive</th>
<th>Stay</th>
<th>Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fail</td>
<td>$1 - c$</td>
<td>0</td>
</tr>
<tr>
<td>Fail</td>
<td>$-c$</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1: Net Payoffs and Normalized Net Payoffs
Agents’ decisions are complements: the fund is more likely to survive as more agents choose to stay. Specifically, the fund survives if and only if

\[A + m \geq \theta, \]

where \(A \) represents total measure of agents who choose to stay. \(m \in [0, \bar{m}] \) is the size of the government’s liquidity injection to the fund and is bounded above by a constant \(\bar{m} > 0 \). \(\theta \in \mathbb{R} \) summarizes the underlying fundamental.\(^{10}\) In the context of the run on MMMFs in 2008, \(1 - A \) would represent the volume of net redemption of fund shares, and \(m \) represents the magnitude of government intervention, such as insurance offerings and liquidity facilities. \(\theta \) represents the fundamental degree of illiquidity of the underlying assets. For the fund to survive, the remaining liquidity \(A + m \) must dominate the liquidity shock \(\theta \). The government cares about social welfare comprising investors’ total payoff less the intervention cost \(k(m) \), which is weakly increasing and convex. \(k(m) \) captures the legal political capital expended, tax distortion, or moral hazard associated with the intervention policy.\(^{11}\)

Apparently, coordination is needed when both \(\theta \) and \(m \) are commonly known by all agents. Indeed, if \(\theta - m \in (0,1) \), two equilibria coexist. In one equilibrium, all investors stay, and in the other one, all investors run. Global games resolve this issue of equilibrium multiplicity through introducing incomplete information. We apply the same technique to assume agents each observe a noisy private signal of \(\theta \). In particular, agent \(i \) observes

\[x_i = \theta + \varepsilon_i, \]

where the noise \(\varepsilon_i \sim Unif[-\delta,\delta] \) is i.i.d. across investors. For simplicity, we assume the prior distribution of \(\theta \) is uniform on \([-B,B]\), where \(B \gg \max\{\delta,\bar{m}\}\).\(^{12}\) We also assume the government does not know the realization of the fundamental \(\theta \) and does not have a private signal about it.\(^{13}\)

\(^{10}\)Similar to Goldstein and Huang (2016), we assume the government publicly commits to the intervention.
\(^{11}\)Intervention costs and political constraints are real, at least at the onset of the crisis (Swagel (2015)).
\(^{12}\)We assume \(B \) is sufficiently large relative to \(\bar{m} \) so that the government cannot guarantee a successful intervention. Uninformative prior corresponds to \(B \to \infty \).
\(^{13}\)Essentially we are assuming institutional investors are typically more informed than the government.
The timing in this single-period game is as follows: the government announces \(m \), and then each investor \(i \) receives a private signal \(x_i \) and plays the game of choosing whether to stay, before their payoffs are realized. We restrict the equilibrium set to symmetric Perfect Bayesian Equilibria (PBE) in monotone strategies: all agents’ strategies are symmetric and monotonic \(w.r.t. \) \(x \) and \(m \).\(^{14}\) Specifically, agent \(i \)’s strategy \(a_i(x_i,m) \) is non-increasing in \(x_i \) and non-decreasing in \(m \). We first examine the equilibrium given the government’s liquidity injection \(m \). For the remainder of this paper, we will refer to this game as investors’ stage game.

2.1.2 Investors’ Stage Game Given Intervention

Because \(B \gg \max\{\delta, \tilde{m}\} \), it is \(w.l.o.g. \) to further restrict the equilibrium set to threshold equilibria denoted by \((\theta^*, x^*) \). The fund survives if and only if \(\theta \leq \theta^* \), and each investor stays if and only if his signal \(x \leq x^* \). Lemma 1 summarizes the equilibrium outcome in the static game.

Lemma 1

In the stage game, \(\forall m \in [0, \tilde{m}] \), there exists a unique symmetric PBE in monotone strategies \((\theta^*, x^*)\), where

\[
\begin{align*}
\theta^* &= 1 + m - c \\
x^* &= 1 + m - c + \delta(1 - 2c) .
\end{align*}
\]

Each investor’s strategy follows \(a_i = \mathbb{1}\{x_i \leq x^*\} \). The fund’s outcome \(s = S \) if \(\theta \leq \theta^* \) and \(s = F \) otherwise.

According to Lemma 1, the fund survives if and only if \(\theta \leq \theta^* \). Each agent stays if

\(^{14}\)In fact, Van Zandt and Vives (2007) show that with regularity conditions ensuring the games are monotone supermodular, the restriction on monotone strategies is not needed. Although these conditions typically hold at least in many static games (Morris and Shin (1998)), it is not our main focus, and we simply concentrate on the natural case of monotone strategies.
and only if his private signal $x_i \leq x^*$. Note that θ^* increases in m and so does x^*. In other words, the fund is more likely to survive and investors are more inclined to stay if the size of government intervention increases. This result shows the static effect of government intervention on coordination. In Section 3, we show government intervention has dynamic coordination effects.

2.1.3 Welfare and Optimal Intervention

Let V_i be investor i’s net payoff, and $W = E \left[\int_0^1 V_i d\theta \right]$. Then investors’ welfare is

$$ W = \frac{1}{2B} \left[\int_{-B}^{\theta^*} (1 - c) \, d\theta - \int_{x^* - \delta}^{\theta^*} (1 - c) \left(1 - \frac{x^* - (\theta - \delta)}{2\delta} \right) \, d\theta - \int_{\theta^*}^{x^* + \delta} c \frac{x^* - (\theta - \delta)}{2\delta} \, d\theta \right]. $$

Let us interpret the above payoff function. $\frac{1}{2B}$ is the probability density of the uniform distribution. The terms inside the square bracket split into three terms. The first term, fundamental, equals the net payoff if all agents stay when the fund survives. The second term, overrun, represents the net payoff loss due to the fact that some agents choose to run when the fund survives. The last term, underrun, is the net loss from agents who choose to stay when the fund fails.

Simple calculation suggests total welfare is

$$ W - k(m) = \frac{(1-c) \left[1 + B - c (1 + \delta) + m \right]}{2B} - k(m). $$

The marginal benefit of m on W is a constant, $\frac{(1-c)}{2B}$. This result comes from the fact that an increase in m also raises θ^* linearly, making the fund more likely to survive. $\frac{(1-c)}{2B}$ is the net payoff from staying $1 - c$, scaled by the probability density $\frac{1}{2B}$. Therefore, intervention improves coordination. Because m lies in a compact set, an optimal intervention always exists:

$$ m^* = \sup \left\{ m \in [0, \bar{m}] : \lim_{\epsilon \to 0} \frac{k(m + \epsilon) - k(m)}{\epsilon} \leq \frac{1 - c}{2B} \right\}. $$

For example, if $k(m) = \frac{1}{2} zm^2$, then $m^* = \min \left\{ \frac{1-c}{2z}, \bar{m} \right\}$.
2.2 Dynamic Economy

We now extend the static model to a two-period dynamic economy. In each period, a unit measure of agents choose whether to stay or run. The government intervenes in each period with \(m_1 \) and \(m_2 \). Agents in period 2 observe whether a run occurred in period 1. To focus on Bayesian learning from public intervention outcomes, we assume the mass of agents in each period are non-overlapping, in that they do not observe the private signals in other periods. The government’s cost of intervention now is \(K(m_1, m_2) \), which is weakly increasing and convex in both arguments, and satisfies \(K(0, 0) = 0 \), where \(\{m_1, m_2\} \in I \), and \(I \subset \mathbb{R}^2 \) indicates a convex set of feasible interventions. For ease of exposition, we assume for the remainder of the paper that the cost is defined on \(\mathcal{C}[0, \bar{m}_1] \times \mathcal{C}[0, \bar{m}_2] \), where \(\bar{m}_1 \) and \(\bar{m}_2 \) are finite constants.

Importantly, the two periods are linked: (a) the fundamentals \(\{\theta_t\}_{t=1,2} \) are identical across two periods. We omit the subscript of \(\theta \) now and relax the assumption in Section 5.3 by only requiring positively correlated fundamentals; (b) agents in period 2 also observe the public outcome of whether investment has succeeded in the first period, indicated by \(s_1 = S \) or \(s_1 = F \); (c) the costs of intervention across these two periods may interact with each other.

The government chooses interventions to maximize investors’ welfare, subtracting the intervention cost \(K(m_1, m_2) \). In each period, agents simultaneously choose whether to stay with the fund (\(a_t = 1 \)) or to run (\(a_t = 0 \)).\(^{15}\) The period-by-period normalized payoff structure is identical to the static game: running (\(a_t = 0 \)) always guarantees 0 payoff, whereas staying (\(a_t = 1 \)) pays off \(1 - c \) in survival and \(-c \) in failure. Agents’ decisions within the same period are complements: investment in period \(t \) succeeds if and only if

\[
A_t + m_t \geq \theta, \tag{4}
\]

where \(A_t \) is the total measure of investors who choose to invest, and \(m_t \) denotes the size of liquidity injected by the government. Again, \(\theta \) represents the fundamental. Similar to the interpretation of the static game, the runs could represent runs on MMMF and financial

\(^{15}\)Because we focus on symmetric equilibria, the subscript \(i \) for agent \(i \) is omitted without any confusion.
commercial papers, respectively, with θ representing the market-wide illiquidity or the credit quality of commercial paper issuers.

The timing within each period goes as follows. First, government announces m_t. Second, each investor i in period t receives a private signal $x_{it} = \theta + \varepsilon_{it}$ about the fundamental, where $\varepsilon_{it} \sim Unif [-\delta, \delta]$. Lastly, investors choose whether to stay, and their payoffs realize. The setup is dynamic in the sense that period 1’s outcome is revealed before investors take actions in period 2.

In the baseline, we study a problem in which the government maximizes welfare by solving

$$
\max_{m_1 \in [0, \bar{m}_1], m_2 \in [0, \bar{m}_2]} E \left[\int_0^1 V_1 di + \int_0^1 V_2 di \right] - K(m_1, m_2).
$$

Given the set $[0, \bar{m}_1] \times [0, \bar{m}_2]$ is compact, an optimal policy exists in general, which exhibits interesting features. We solve this problem in two steps. The next section takes government interventions (m_1, m_2) as given, and derives the stage-game equilibrium. Section 4 then examines a benevolent government’s optimal policy design.

3 Coordination Equilibrium

We first examine the stage game of investors’ coordination in each period, taking the intervention $\{m_1, m_2\}$ as given. Our equilibrium concept is symmetric Perfect Bayesian equilibria (PBE) in monotone strategies. Specifically, all agents’ strategies are symmetric and monotonic w.r.t. x_t and m_t: agent i’s strategy in period t, $a_{it}(x_{it})$, is non-increasing in x_{it} and non-decreasing in m_t, $t = 1, 2$.

3.1 Equilibrium and Social Welfare in Period 1

The analysis in period 1 is identical to the static game. We relabel the unique threshold equilibrium with time subscripts $(\theta^*_1, x^*_1) = (1 + m_1 - c, 1 + m_1 - c + \delta (1 - 2c))$. The fate of the fund is $s_1 = S$ if $\theta \leq \theta^*_1$, and $s_1 = F$ otherwise. Agent i adopts a threshold strategy $a_{i1} = 1 \{x_{i1} \leq x^*_1\}$.

12
The social welfare in period 1 is also identical to the static economy,

\[W_1 - K(m_1,0) = \frac{(1-c)[1+B-c(1+\delta)+m_1]}{2B} - K(m_1,0). \]

3.2 Equilibrium in Period 2

In period 2, the outcome of period-1 intervention (henceforth referred to as public news) is publicly known. As a result, beliefs on \(\theta \) are truncated either from above or from below.

Unless specified otherwise, we assume \(2\delta > 1 \) and \(\frac{1}{2\delta+1} < c < \frac{2\delta}{1+2\delta} \) for the remainder of the paper. These assumptions correspond to the fact that during crisis, uncertainty is high and the cost of illiquidity is in an intermediate range in which agents do not overwhelmingly prefer to stay or to run. These assumptions ensure a unique threshold equilibrium in period 2 for both \(s_1 = S \) and \(s_1 = F \), and for all values that \(m_1 \) and \(m_2 \) take on.\(^{16}\)

3.2.1 Survival News

If the fund in period 1 has survived \((s_1 = S) \), the prior belief on \(\theta \) is bounded above at \(\theta^*_1 \):

\(\theta \sim \text{Unif}[-B, \theta^*_1] \). In this case, investors might stay regardless of their signals. In fact, this equilibrium exists if and only if \(m_2 > m_1 - c \). In this equilibrium, the (hypothetical) threshold \(x^*_2 \) satisfies \(x^*_2 \geq \theta^*_1 + \delta \), which is always above all agents’ realized signals. We call such equilibrium *Equilibrium with Dynamic Coordination* because the government’s intervention in the first period has a dominant effect on improving coordination among investors in the second period.

Lemma 2 (Stage Game Equilibrium with Dynamic Coordination)

*If \(s_1 = S \), \((\theta^*_2, x^*_2) = (\theta^*_1, \theta^*_1 + \delta)\) constitutes an equilibrium if and only if \(m_2 > m_1 - c \).^{17}*

Next, we turn to threshold equilibria with \(\theta_2^* < \theta_1^* \) so that the fate of the fund in period 2 still has uncertainty. Likewise, any threshold equilibrium \((\theta^*_2, x^*_2)\) necessarily satisfies two conditions. First, when \(\theta = \theta_2^* \), the fund is about to fail, that is, \(A_2 + m_2 = \)

\(^{16}\)We discuss equilibrium multiplicity and the case of \(\delta \to 0 \) in Section 5.5.

\(^{17}\)Now that \(\theta \leq \theta_1^* \) is common knowledge, any equilibrium with \((\theta_2^*, x_2^*) = (\theta_1^*, \theta_1^* + \delta)\) is equivalent to one with \((\theta_2^*, x_2^*) = (\theta_1^*, \theta_1^* + \delta)\).
Pr \left(x_2 < x^*_2 \mid \theta = \theta^*_2 \right) + m_2 = \theta^*_2. \) Second, the marginal agent who receives the signal \(x^*_2 \) is indifferent between stay and run, \(\Pr \left(\theta \leq \theta^*_2 \mid x_2 = x^*_2, \theta \in [-B, \theta^*_1] \right) = c. \)

We analyze the equilibrium in two cases, depending on whether the marginal investor finds the public news “useful.” Ignoring the public news, the marginal investor’s posterior belief on \(\theta \) is simply \(\Pr \left(\theta \mid x_2 = x^*_2 \right) \sim \text{Unif} \left[x^*_2 - \delta, x^*_2 + \delta \right] \). If \(x^*_2 + \delta < \theta^*_1 \), then the marginal investor finds the public news useless because it does not additionally help him learn about \(\theta \), that is, \(\Pr \left(\theta \leq \theta^*_2 \mid x_2 = x^*_2, \theta \in [-B, \theta^*_1] \right) = \Pr \left(\theta \leq \theta^*_2 \mid x_2 = x^*_2 \right) \). We call such equilibrium \textit{Equilibrium without Dynamic Coordination} because intervention in the first period has no effect on coordination in the second period.

Lemma 3 (Stage Game Equilibrium without Dynamic Coordination)

If \(s_1 = S \) and \(m_2 < m_1 - 2\delta (1 - c) \), an equilibrium with thresholds \((\theta^*_2, x^*_2)\) exists, in which

\[
\begin{align*}
\theta^*_2 &= 1 + m_2 - c \\
x^*_2 &= 1 + m_2 - c + \delta (1 - 2c).
\end{align*}
\]

(6)

Notice that in this case, the dynamic game is simply a repeated version of the static game. This is not surprising because the public news is useless. However, if \(x^*_2 + \delta > \theta^*_1 \), the marginal investor finds the public news useful, that is, \(\Pr \left(\theta \leq \theta^*_2 \mid x_2 = x^*_2, \theta \in [-B, \theta^*_1] \right) \neq \Pr \left(\theta \leq \theta^*_2 \mid x_2 = x^*_2 \right) \). We call this equilibrium \textit{Equilibrium with Partial Dynamic Coordination} because government intervention in the first period partially influences the coordination among investors in the second period. Equilibrium without dynamic coordination is an artifact of bounded noise in the private signals. For unbounded noise, equilibrium always involves at least partial dynamic coordination.

Lemma 4 (Stage Game Equilibrium with Partial Dynamic Coordination)

If \(s_1 = S \) and \(m_1 - 2\delta (1 - c) < m_2 < m_1 - c \), an equilibrium exists with thresholds

\[
\begin{align*}
\theta^*_2 &= 1 + m_2 - c + \frac{c [m_2 - m_1 + 2\delta (1 - c)]}{2\delta - c (1 + 2\delta)} \\
x^*_2 &= 1 + m_2 - c + \delta (1 - 2c) + \frac{c (1 + 2\delta) [m_2 - m_1 + 2\delta (1 - c)]}{2\delta - c (1 + 2\delta)}.
\end{align*}
\]

(7)

Combining Lemma 2, 3, and 4, Proposition 1 describes the equilibrium outcome given
any \((m_1, m_2)\) and \(s_1 = S\).

Proposition 1 (Equilibrium in period 2 when \(s_1 = S\))
1. If \(m_2 < m_1 - 2\delta (1 - c)\), the unique equilibrium is the Stage Game Equilibrium without Dynamic Coordination.

2. If \(m_1 - 2\delta (1 - c) < m_2 < m_1 - c\), the unique equilibrium is the Stage Game Equilibrium with Partial Dynamic Coordination.

3. If \(m_1 - c < m_2\), the unique equilibrium is the Stage Game Equilibrium with Dynamic Coordination.

3.2.2 Failure News

If the fund in period 1 has failed \((s_1 = F)\), the prior belief on \(\theta\) is bounded below at \(\theta_1^*\): \(\theta \sim Unif[\theta_1^*, B]\). Proposition 2 summarizes the equilibrium outcome in this case. The detailed derivation can be found in Appendix B. Notice that in the Stage Game Equilibrium with Dynamic Coordination, investors choose to run regardless of their signals.

Proposition 2 (Equilibrium in period 2 when \(s_1 = F\))
1. If \(m_2 < m_1 + 1 - c\), the unique equilibrium is the Stage Game Equilibrium with Dynamic Coordination.

2. If \(m_1 + 1 - c < m_2 < m_1 + 2c\delta\), the unique equilibrium is the Stage Game Equilibrium with Partial Dynamic Coordination.

3. If \(m_1 + 2c\delta < m_2\), the unique equilibrium is the Stage Game Equilibrium without Dynamic Coordination.

3.2.3 Investors’ Welfare and Dynamic Coordination

Let \(W_{2S} = E\left[\int_0^1 V_2 di \mid s_1 = S\right]\) be the total expected payoff in period 2 conditional on \(s_1 = S\). Also, let \(W_{2F} = E\left[\int_0^1 V_2 di \mid s_1 = F\right]\) be the total expected payoff in period 2 when \(s_1 = F\). Applying results from Proposition 1 and 2, we are able to obtain \(W_{2S}\) and \(W_{2F}\) for given values of \(m_1\) and \(m_2\). Corollary 1 below shows the results.

Corollary 1 (Investors’ Welfare in Period 2)
1. Conditional on \(s_1 = S\),
(a) If $m_2 < m_1 - 2\delta (1 - c)$, $W_{2S}^{nc} = \frac{(1-c)[1+B-c(1+\delta)+m_2]}{B+\theta_1'}$.

(b) If $m_1 - 2\delta (1 - c) < m_2 < m_1 - c$,
 \[W_{2S}^{pc} = \frac{1-c}{\theta_1'+B} \left[\theta_1' + B + \frac{c_\delta[2\delta-c(1+2\delta)]^2}{[\delta-c(1+2\delta)]'} \right]. \]

(c) If $m_2 > m_1 - c$, $W_{2S}^{c} = (1-c)$.

2. Conditional on $s_1 = F$,

(a) If $m_2 < m_1 + 1 - c$, $W_{2F}^{c} = 0$.

(b) If $m_1 + 1 - c < m_2 < m_1 + 2c\delta$, $W_{2F}^{pc} = \frac{1-c}{\theta_1'-B} \frac{c\delta(-1+c-m_1+m_2)^2}{(-1+c+2\delta)^2}$.

(c) If $m_2 > m_1 + 2c\delta$, $W_{2F}^{nc} = \frac{1-c}{\theta_1'-B} (m_2 - m_1 - c\delta)$.

The superscripts of W_{2S} and W_{2F} refer to equilibrium types. nc, pc, and c respectively stand for equilibrium without dynamic coordination, with partial coordination, and with coordination.

The left panel of Figure 1 plots W_{2S} against m_2, including the welfare function in all three different types of equilibria. Given m_1, W_{2S} is continuous, increasing in m_2, and convex in the region that involves partial dynamic coordination. Unlike in the first period, the marginal effect of m_2 on W_{2S} is no longer a constant. Initially, W_{2S} increases linearly in m_2, in which case the intervention in the first period has no dynamic coordination effect. When $m_1 - 2\delta + 2c\delta < m_2 < m_1 - c$, the marginal effect of m_2 is increasing, due to the dynamic coordination effect of period 1 intervention. When $m_2 > m_1 - c$, the dynamic coordination effect is maximized and all agents’ decisions are well coordinated towards an equilibrium without any run. In that case, further increasing m_2 has no effect.

Similarly, the right panel of Figure 1 plots W_{2F} against m_2, including the welfare function in all three different types of equilibria. Given m_1, W_{2F} is continuous, increasing in m_2, and convex when the equilibrium involves partial dynamic coordination. The effect of m_2 on W_{2F} is not a constant either. When $m_2 < m_1 + 1 - c$, the failed intervention in period 1 makes all agents pessimistic. A slight increase in m_2 does not change people’s belief, and therefore the marginal effect of m_2 on W_{2F} is zero. When $m_1 + 1 - c < m_2 < m_1 + 2c\delta$, the marginal effect of m_2 on W_{2F} is positive and increasing. Finally, when $m_2 > m_1 + 2c\delta$, the dynamic effect is zero and W_{2F} increases linearly in m_2.

16
Clearly, m_1 affects both W_{2S} and W_{2F} by altering θ_1^*, and thus the resulting informational structure. Because W_{2S} and W_{2F} are piecewise in m_1 and thus not everywhere differentiable, we define the left-hand derivative of W_{2S} and W_{2F} w.r.t. m_1 as the conditional inference effect, as Figure 2 illustrates.

Proposition 3 (Conditional Inference Effect)

Given s_1 and m_2, investors’ welfare W_{2S} and W_{2F} decrease in m_1.

The Conditional Inference Effect implies that given the outcome of the period-1 fund, and given the government’s intervention into the period-2 fund, higher initial intervention always decreases investors’ welfare. This effect is consistent with the fact that the government often faces uncertainties on intervention outcomes, and is aware of the informational detriments of using large interventions.\(^\text{18}\) However, the overall effect of m_1 on the unconditional $E[W_2]$ is non-monotonic because besides the conditional inference effect, the probability of $s_1 = S$ also increases with m_1. Thus, to the extent that intervention outcomes are correlated across the two periods, increasing m_1 kills two birds with one stone. Figure 3 shows this non-monotonic property by plotting $E[W_2] = \Pr(s_1 = S) W_{2S} + (1 - \Pr(s_1 = S)) W_{2F}$ against m_1, taking m_2 as given. Clearly, the overall effect attains its highest level at $m_1 = m_2 + c$, and starts to decline afterward.\(^\text{19}\) We note the declines happen in regions where the stage-game equilibrium has dynamic coordination only if $s_1 = S$, in which case the conditional inference effect dominates.

That said, the intervention outcomes are perfectly correlated if $c - 1 < m_1 - m_2 < c$. In this region, the stage-game equilibrium features dynamic coordination no matter the fund survives in the first period or not. As we will show in the next section, if the intervention costs are similar across the two periods, the interventions \(\{m_1, m_2\}\) also tend to be close to one another even without public learning. This force makes the public signal s_1 dominate over the private signal x_{i2}, leading to a greater tendency for highly correlated coordination outcomes, which we refer to as the endogenous correlation effect.

\(^{18}\)See, for example, Bernanke (2015), page 282, on the intervention in AIG: “A critical question was whether the proposed 85 billion line of credit would in fact save the company. For us, the ultimate disaster would be to lend such an enormous amount and then see the company collapse.”

\(^{19}\)The decline is intuitive: conditional on s_1, a larger m_1 leads to a more negative update on θ_1^* because investors attribute the fund’s survival more to the large intervention. However, they become pessimistic about the fundamental when the fund fails.
Proposition 4 (Endogenous Correlation Effect)

 Investors’ welfare $E[W_2]$ increases in m_1 when $c - 1 < m_1 - m_2 < c$.

To get the general intuition for this effect, it is useful to compare equilibrium thresholds across different types of stage game equilibria. When $s_1 = S$ and $m_2 \in (m_1 - 2\delta (1 - c), m_1 - c)$, both x_2^* and θ_2^* in the Equilibrium with Partial Dynamic Coordination (Lemma 4) exceed their counterparts in the Equilibrium without Dynamic Coordination (Lemma 3), but are less than those in the Stage Game Equilibrium with Dynamic Coordination (Lemma 2). When the marginal agent finds the public news useful and realizes that the expected threshold level suggested by his signal alone is too stringent, he behaves more aggressively by choosing a higher threshold and running less often. As a result, θ_2^* is also higher and the fund is more likely to survive. Similarly, when $s_1 = F$, both x_2^* and θ_2^* are the lowest (most stringent) in the Stage Game Equilibrium with Dynamic Coordination, followed by the Stage Game Equilibria with partial and no dynamic coordination. If we take coordination outcomes without dynamic learning as the benchmark, the dynamic coordination effect of initial intervention suggests that initial survival increases the likelihood of subsequent survival, and initial failure increases the likelihood of subsequent failure, which drives Proposition 4. Again, anecdotes during the recent financial crisis support the assertion that the policy makers place weights on this impact of one intervention on subsequent coordination outcomes.20

In our model, the initial intervention essentially designs information for the subsequent intervention. Related is Goldstein and Huang (2016) which specializes to the case of costless information design for a single coordination game. In their setup, maintaining the regime too often reduces agents’ positive updates, resembling our conditional inference effect. However, abandoning too often results in costly failures, and thus should be avoided. We generalize this desire for good news to multiple interventions and derive the novel endogenous correlation effect of intervention outcomes. Because information design is costless, the policymaker

20For example, Geithner (2014), page 215, recounts how requiring haircuts in FDIC’s involvement in Washington Mutual (WaMu) makes the intervention weaker, and the policy makers were concerned that the requirement might lead to a higher probability of failure, “more bank failures and much bigger FDIC losses down the road,” and that “more failures would eventually require more aggressive government interventions.” Bernanke (2015) also mentions on page 277 that “financial panics are a collective loss of the confidence essential for keeping the system functioning,” and the FDIC’s sale of WaMu would likely trigger downgrades and worsen market beliefs.
optimally commits to abandon the regime with a high enough frequency so that a regime maintenance results in no attack, so maintenance leads to survival; and because the game ends if the regime is abandoned, abandonment leads to failure. We show that with costly information design and continuation game even upon initial failure, survival outcomes still tend to correlate. However, the correlation is in general imperfect and relative intervention costs matter. As discussed next, this phenomenon has profound implications when discussing endogenous intervention policy across countries or episodes of runs.

4 Dynamic Intervention and Optimal Policy

The analysis so far has taken as given the government’s interventions \{m_1, m_2\} and studies investors’ coordination for given interventions. In this section, we consider the government’s problem. Specifically, given the costs and constraints of interventions, how should the government allocate resources across two periods, and how does the information-structure channel affect the scale and sequence of interventions? This section discusses three key implications for the optimal policy: emphasis on initial intervention, under- and over-intervention by myopic governments, and the “too big to save first” phenomenon.

Equation (5) states the government’s objective, which is to maximize all investors’ payoff net the intervention cost. The government’s strategy space is to choose \(m_1 \in [0, \bar{m}_1] \) and \(m_2 \in [0, \bar{m}_2] \) subjecting to potential information set and implementation constraint. This section focuses on the case of committed intervention, which corresponds to choosing \(m_2 \) before \(s_1 \) is realized. In other words, the choice of \(m_2 \) is independent of \(s_1 \) and \(m_1 \). We occasionally consider the case in which the government faces solely a hard budget constraint, \(m_1 + m_2 = M \), to illustrate the main tradeoffs in explicit closed forms. In this case, the choice of \(m_2 \) depends on \(m_1 \) but not \(s_1 \). Section 5.1 examines the case of contingent intervention, which corresponds to choosing \(m_2 \) after \(s_1 \) is realized. Committed intervention describes situations in which the government has to roll out policy programs or set up funding facilities before knowing the outcome of previous interventions.
4.1 Emphasis on Initial Intervention

Let us first suppose the government has a total budget M that can be costlessly used across the two periods. In other words, $K(m_1, m_2) = \frac{I_{\{m_1+m_2>M\}}}{1-I_{\{m_1+m_2>M\}}}$. A benevolent government solves the following problem:

$$\max_{m_1, m_2} W = E \left[\int_0^1 V_1(i) di + \int_0^1 V_2(i) di \right]$$

s.t. $m_1 + m_2 = M$. (8)

We have shown earlier the information channel that arises from dynamic learning: while W_1 increases linearly with m_1, W_2 is non-monotonic in m_1 and increases with m_2 in a non-linear manner. Because the government also faces a hard budget constraint $m_1 + m_2 = M$, an increase in m_1 necessarily crowds out m_2 through the budget channel. When the government optimally allocates resources in two periods, it needs to consider both.

Figure 4 plots a typical social welfare W as m_1 varies. The patterns delivered by the figure hold for all parameters. (a) W is always flat for either small or large m_1. (b) W always attains its maximum at $m_1 = \frac{M+c}{2}$. Therefore, whenever M is large, the government should invest $m_1^* = \frac{M+c}{2}$. Lemma 6 in the Appendix summarizes the aggregate social welfare and the net benefit of initial intervention.

Therefore, the optimal intervention plan also depends on M, the total resources available to the government. When M is small ($M < \frac{M+c}{2}$), it is optimal to set $m_1 = M$. By contrast, when M gets larger, setting $m_1 = M$ may be sub-optimal, and the optimal initial intervention is $m_1 = \frac{M+c}{2}$.

Proposition 5 characterizes the optimal intervention.

Proposition 5 (Optimal Intervention)

The optimal intervention under budget constraint M is $\min \left(\frac{M+c}{2} , M \right)$. Optimal intervention always emphasizes initial intervention: $m_1^* > m_2^*$.

At the optimal intervention level, the fund in period 2 survives if and only if the fund in period 1 survives. The endogenous correlation effect completely dominates. The intuition

\[\text{[\text{Note: 21See Geithner (2014), pages 264-266, for an example of intervention cost and budget consideration.}]}\]
for $m_1^* > m_2^*$ is then apparent. To see this, suppose the government equally splits the budget and invests $\frac{M}{2}$ in each period. Two periods’ intervention outcomes are completely correlated. Knowing this, government always has incentives to kill two birds with one stone – increasing m_1 to increase the survival probability in both funds.\(^{22}\)

One may question whether the results are driven by the fact that imposing the budget constraint takes away the flexibility of m_2 after m_1 is chosen. By specifying a very general $K(m_1, m_2)$, we show that emphasizing initial intervention is a robust phenomenon under committed interventions.

Proposition 6 (Emphasis on Early Intervention)

If the intervention cost satisfies $K(m_1, m_2) > K\left(\frac{1}{2}[m_1 + m_2], \frac{1}{2}[m_1 + m_2 - 2c]\right)$, the optimal policy strictly emphasizes initial intervention, that is, $m_1^ > m_2^*$.*

The condition in the proposition is satisfied by many plausible cost functions, such as one that is separable and symmetric in m_1 and m_2, or one that emphasizes consistency in the sense that $K(m_1, m_2)$ only depends on $m_1 + m_2$ and $|m_1 - m_2|$ and is increasing in $|m_1 - m_2|$. Note that this proposition is not about comparing the absolute sizes of the interventions. Given that we have normalized the total capital in the economy to one in both periods, we are really talking about a notion of intervention relative to the market size. Therefore, the conclusion could apply more broadly, especially when the coordination games are scale-invariant, that is, the normalized intervention, cost, and participation scale proportionally with the market size.\(^{23}\)

4.2 Information Externality and Myopic Intervention

This section examines the situations in which the decision-maker for the initial intervention does not fully take into consideration the informational impact on subsequent in-

\(^{22}\)The ratio $\frac{m_2^*}{m_1^*}$ is weakly increasing in M and weakly decreasing in c. Thus, the tilt toward initial intervention is most significant when the government has a small budget or the illiquidity cost is high.

\(^{23}\)Indeed, the eligible ABCPs for AMLF constitute less than half of the commercial paper markets. Thus, the scale of AMLF ($\$150$ billion in the first 10 days relative to the magnitude of the run-$\$172$ billion plummet from the $\$3.45$-trillion MMF sector) is higher than CPFF ($\$144$ billion usage in the first week, relative to a reduction of commercial paper outstanding, larger both in percentage (15%) and in level (330 billion)) that targets almost the entire commercial paper market. AMLF and its success also seem to have helped later interventions. For example, CPFF was also effective and even generated $\$5$ billion in net income for the government.
terventions. This scenario happens when the incumbent government is not expecting to be re-elected and thus does not consider the impact of current intervention on coordination games and interventions under the future government. This scenario could also happen when one European-Union country’s intervention does not fully consider the informational externality on neighboring countries with correlated fundamentals.

We characterize how the information externality on the second period affects the optimal initial intervention \(m_1^* \). In general, a myopic government—one that ignores this negative impact—may fail to formulate a welfare-maximizing policy. Understanding such myopic interventions can facilitate formulating forward-looking policies and coordinated efforts among multiple governments.

To highlight the information externality from the initial intervention, we shut down the budget channel in our general intervention cost function by setting \(K_{12}(m_1, m_2) = 0 \) for the remainder of the paper.\(^{24}\) For a given \(m_1 \), let us define

\[
Y(m_1; \chi) = W_1 - K(m_1, 0) + \chi \max_{m_2} \left[\frac{B + m_1 + 1 - c}{2B} [W_2S - (K(m_1, m_2) - K(m_1, 0))] + \frac{B - m_1 - 1 + c}{2B} [W_2F - (K(m_1, m_2) - K(m_1, 0))] \right].
\]

(10)

\(Y(m_1; \chi) \) is the social welfare given the initial intervention \(m_1 \). Note that the choice of \(m_1 \) is already optimized. The government chooses \(m_1 \) to maximize the social welfare. Here, \(\chi \in [0, 1] \) measures how much the government cares about the fate of the fund in the second period. In particular, \(\chi = 0 \) corresponds to the static benchmark, and \(\chi = 1 \) corresponds to the case in which the second fund’s fate is equally important. \(\chi < 1 \) corresponds to the short-termism of the government. Alternatively, in the context of the global economy in which countries’ fundamentals are correlated, \(\chi \) captures the extent to which one country considers the externality it imposes on others.

We are interested in \(\frac{\partial m_1^*}{\partial \chi} \), the effect of government myopia on the initial intervention. By Theorem 2.1 in Athey, Milgrom, and Roberts (1998), \(m_1^* \equiv \arg\max_{m_1} Y(m_1, \chi) \) is non-increasing in \(\chi \) iff \(Y \) has decreasing differences in \(\chi \) and \(m_1 \), and is non-decreasing in \(\chi \) iff \(Y \)

\(^{24}\)The case of a hard budget constraint trivially predicts that the more the government considers the welfare in the second period, the less it would intervene in the first period.
has increasing differences in χ and m_1.

Proposition 7 (Myopic Intervention)

A myopic government may under- or over-intervene initially. In particular,

1. $\frac{\partial m_1^*}{\partial \chi} \geq 0$, iff either $m_1^* \geq c$ and $m_2^* = m_1^* - c$ always or $m_1^* \leq c$ and $m_2^* = 0$ always.

2. $\frac{\partial m_1^*}{\partial \chi} \leq 0$, iff either $m_2^* > m_1^* + 1 - c$ always or $m_1^* > c$ and $m_2^* < m_1^* - c$ always.

Proposition 7 emphasizes m_1 relative to the case in which the intervention externality is absent. A myopic government under-intervenes initially when intervention outcomes are perfectly correlated. This scenario (case 1) happens when the costs of intervention in the two periods are comparable. When they are both small ($m_1^* \leq c$ and $m_2^* = 0$) or both large ($m_1^* \geq c$ and $m_2^* = m_1^* - c$), the endogenous correlation effect dominates. Hence, increasing the first period's survival probability increases the survival for the second period one for one. Therefore, increasing the probability of survival by increasing m_1 also benefits investors in the second period, a fact that a myopic government neglects.

To link Proposition 7 to exogenous parameters, we provide some sufficient conditions in the next corollary that lead to under-intervention. These conditions are neither unique, nor restrictive. For simplicity in exposition, we assume for the remainder of the paper that K is twice-differentiable in a continuous feasible range of intervention $I = [0, \bar{m}_1] \times [0, \bar{m}_2]$. This specification includes cases of budget constraint and separable quadratic intervention costs. Let K_i denote the partial derivative w.r.t. m_i.

Corollary 2

A myopic government under-intervenes initially if one of the two following conditions holds:

1. $K_1(c, \cdot) > \frac{1-c}{B}$ and $K_2(\cdot, 1-c) \geq \frac{1-c}{B} \frac{c \delta}{2c \delta + c - 1}$.

2. For some $b > c$, it holds that $K_1(b, \cdot) > \frac{1-c}{B}$, $K_1(c, \cdot) < \frac{1-c}{B} \frac{\delta - c(1+2\delta)}{23-c(1+2\delta)}$, $K_2(\cdot, b-c) \leq \frac{1-c}{2B}$, and $K_2(\cdot, 1) \geq \frac{(1-c)\delta}{B(2c\delta + c - 1)}$.

Interestingly, failure to consider dynamic coordination could also result in excessive intervention through the information structure it creates. This happens when the cost for the
first intervention is sufficiently small such that the initial intervention is large scale, yet the second intervention is sufficiently costly that survival does not always lead to survival. At the same time, a high m_1 reduces the quality of good news, reducing the marginal benefit of m_2. When the costs of intervention in the two periods are rather disproportionate, outcomes are less correlated, and the conditional inference effect dominates. For a myopic government, shading m_1 makes intervention in the second period easier regardless of whether the fund survives or fails in the first period. Again, the next corollary gives some illustrating sufficient conditions under which over-intervention occurs.

Corollary 3

A myopic government over-intervenes initially if one of the following conditions holds:

1. For some $b \geq 0$, it holds $K_1(c, \cdot) > \frac{1-c}{B}$ and $K_2(\cdot, b + 2c\delta) < \frac{1-c}{2B} \frac{\delta}{1+2\delta}$.

2. $K_1(b, \cdot) > \frac{1-c}{B}$, $K_1(c, \cdot) < \frac{1-c}{B} \frac{\delta-c(1+2\delta)}{2B-c(1+2\delta)}$, $K_2(\cdot, 0) > \frac{1-c}{2B} \frac{2\delta}{2B-c(1+2\delta)}$.

We illustrate the results in Figures 6 and 7. We also note that when the conditions for increasing or decreasing differences do not hold globally, optimal initial intervention can be non-monotonic in χ. For example, in Figure 8, m_1^* increases with χ initially and finally decreases.

The above proposition calls for coordinated interventions across governments. For example, because economic fundamentals across EU countries are highly correlated, one member’s isolated intervention imposes informational externality on other members. In the case of AMLF and CPFF, because the capacity to intervene using CPFF is comparable to that in AMLF, the later intervention was likely able to capture the benefit from investors’ learning of earlier intervention. The above proposition thus provides additional justification for the overwhelming scale of AMLF.

4.3 “Too Big to Save First”

In this section, we consider how the government intervenes in two funds of different sizes, given the dynamic coordination effect. In particular, we examine the case in which the government determines both the size and the sequence of interventions.
Without loss of generality, we normalize the size of fund 1 to 1, and the size of fund 2 to \(\lambda > 1 \). Here, size simply refers to the total measure of investors. We continue to assume fund 1 survives if and only if
\[
A_1 + m_1 \geq \theta,
\]
where \(A_1, m_1, \) and \(\theta \) have the same interpretations as before. In addition, fund 2 survives if and only if
\[
\lambda A_2 + m_2 \geq \theta \lambda,
\]
where \(A_2 = \int_0^\lambda \frac{1(a_2i=1)ds}{\lambda} \in [0, 1] \) is the fraction of investors who choose to stay, and thus \(\lambda A_2 \) is the liquidity from remaining investors. Fund 2 survives if and only if the total liquidity is greater than \(\theta \lambda \). The threshold is also augmented by \(\lambda \) so that we are not distorting the funds’ survival probability absent interventions.\(^{25}\) The government’s choice variables are extended: it chooses not only the intervention plan \(\{m_1, m_2\} \), but also which fund to intervene in first:
\[
\max_{\iota, m_1, m_2} E \left[\int_0^1 V_{1i}di + \int_0^{\lambda} V_{2i}di \right] - K (m_1, m_2).
\]
If \(\iota = 1 \), the government intervenes in fund 1 first. \(E \left[\int_0^1 V_{1i}di \right] = \frac{1-c}{2B} [1 + B - c (1 + \delta) + m_1] \), and \(E \left[\int_0^{\lambda} V_{2i}di \right] \) depends on whether \(s_1 = S \) or \(s_1 = F \). If \(\iota = 2 \), however, the outcome \(s_2 \) arrives first, \(E \left[\int_0^{\lambda} V_{2i}di \right] = \lambda \cdot \frac{1-c}{2B} [1 + B - c (1 + \delta) + m_2] \), and \(E \left[\int_0^1 V_{1i}di \right] \) depends on whether \(s_2 = S \) or \(s_2 = F \).

Proposition 8 first illustrates the tradeoffs in the case in which the government has a budget constraint \(m_1 + m_2 = M \).

Proposition 8 (Too Big to Save First)

A benevolent government that faces a budget constraint always intervenes to induce perfectly correlated outcomes across interventions. In addition, it intervenes in the smaller fund first:

\(^{25}\theta \) in the baseline specification captures the systemic illiquidity for a market or fund of unit size. Therefore, we scale it up when the fund size scales up. This is a natural specification, because if we keep \(\theta \) unscaled while changing the size of the fund, we are implicitly making larger fund more likely to survive, which clouds the informational effect on which we hope to focus. To see this, let us examine the static example. The survival threshold the larger fund becomes \(\lambda (1 - c) + m \), so with the same intervention, the larger fund survives with greater probability.
\(\nu^* = 1 \).

Appendix A.7 contains the proof, which is conducted in two steps. First, we show that given \(\nu \), the optimal intervention plan always satisfies \(\frac{m_2}{\lambda} = m_1 - c \) and thus leads to correlated outcomes. Note that if \(\lambda = 1 \), the result is identical to that in Section 4.1, where \(m_2^* = m_1^* - c \). Next, we compare different choices of \(\nu \in \{1, 2\} \) and show the optimal intervention sequence features \(\nu^* = 1 \). Two factors contribute to this result. First, the larger fund benefits more from the resolution of uncertainty due to the revelation of the initial intervention’s outcome. Second, intervening in the smaller fund to create the same information structure is less costly.

The above result carries through with general intervention cost functions with \(K \left(m_1, \frac{m_2}{\lambda} \right) > K \left(\frac{1}{2} \left[m_1 + \frac{m_2}{\lambda} \right], \frac{1}{2} \left[m_1 + \frac{m_2}{\lambda} - 2c \right] \right) \), a slight modification from the condition in Proposition 6.

Our result thus relates to the concept of “too big to fail.” Rather than emphasizing financial networks and connectedness, we are adding an information-structure perspective to the debate on systemic fragility. Some institutions could be too big to fail, but the best way to save them may entail saving the smaller ones first to better boost market confidence.\(^{26}\)

5 Discussions and Extensions

5.1 Contingent Interventions

In reality, government can sometimes choose the size of later intervention after the outcome of the initial intervention is realized. We analyze this case in this section. The intuition and key tradeoff in earlier discussions still apply. Note that any \(m_2^F \in (0, 1 + m_1^* - c] \) cannot be optimal since if \(s_1 = F \), the fund in the second still fails for sure despite for costly intervention. If \(m_{2F}^* = 0 \), the endogenous correlation effect is even reinforced. If \(m_{2F}^* > 1 + m_1^* - c \), however, it is possible to have failed initial intervention but successful subsequent intervention, and the endogenous correlation effect is weaker. The overall dynamic coordination

\(^{26}\)Our results do not contradict ‘too big to fail’ in that we are not discussing which institutions to save, but which institutions to save first. One way to think about this is that among the too-big-to-fail institutions, if the government can commit to which institutions intervention outcome to be revealed first, it is informationally efficient to reveal the intervention outcome of the smaller fund first.
still boils down to a tradeoff between the endogenous correlation effect and the conditional inference effect.

Proposition 9 (Emphasis on Initial Intervention (Contingent Case))

When \(K_2(0, 1 - c) > \frac{(1-c)^2}{B-1} \), then contingent interventions strictly emphasizes initial intervention: \(m^*_1 > m^*_2 s_1 \).

This result extends Proposition 6 to contingent interventions. If the cost for the subsequent intervention (second period) is big enough, then initial intervention is emphasized. This is just one example of the sufficient conditions under which the endogenous correlation effect dominates the conditional inference effect. Note this result applies to situations in which the initial intervention is more costly than the subsequent intervention.

Proposition 10 (Myopic Intervention (Contingent Case))

The government’s initial intervention is weakly increasing in the extent it considers dynamic coordination, i.e., \(\frac{\partial m^*_1}{\partial \chi} \geq 0 \) if one of the following conditions hold:

1. \(K(\cdot, 1 - c) - K(\cdot, 0) > \min\{\frac{(1-c)^2}{2\delta - 1 + c + \epsilon}, \frac{c(1-c)}{B-1}\} \) and \(K_1(c, \cdot) \geq \frac{1-c}{B} \).

2. \(K(\cdot, 1 - c) - K(\cdot, 0) > \min\{\frac{(1-c)^2}{2\delta - 1 + c + \epsilon}, \frac{\delta(1-c)}{B-1}\} \) and \(1 - c - K(\cdot, 1 - c) + K(\cdot, 0) - (2 + B - c)K_2(\cdot, 1 - c) > 0 \).

The government’s contingent intervention is weakly decreasing in the extent it considers dynamic coordination, i.e., \(\frac{\partial m^*_1}{\partial \chi} \leq 0 \), when \(K_2(\cdot, 0) > \frac{1-c}{B + c - 2} \frac{2\delta}{2\delta - c(1 + 2\delta)} \) and \(K_1(c, \cdot) < \frac{1-c}{B} \frac{\delta - c(1 + 2\delta)}{2\delta - c(1 + 2\delta)} \).

These sufficient conditions for under- and over-interventions simply correspond to corollaries 2 and 3. With contingent interventions, myopic government still under- or over-intervenes initially. The optimal initial intervention is weakly increasing in the extent it considers dynamic coordination, i.e., \(\frac{\partial m^*_1}{\partial \chi} \geq 0 \), iff either \(m^*_1 \geq c \) and \(m^*_2s = m^*_1 - c \) and \(m^*_2F = 0 \), or \(m^*_1 \leq c \) and \(m^*_2s = m^*_2F = 0 \) always. It is weakly decreasing iff \(m^*_1 > c \) and \(m^*_2s < m^*_1 - c \) and \(m^*_2F = 0 \) always. Because when \(m^*_2F = 0 \), the endogenous correlation effect is the same as in the committed intervention case, and the same intuition carries through.

Finally, regarding the sequence of interventions in funds of different sizes, saving the smaller fund first is still cheaper to create the same learning on the fundamental, and the
larger fund still benefits more from the uncertainty reduction. A policy that induces perfectly
correlated outcomes and saves the larger fund first cannot be optimal. In order words, the
larger fund is still “too big to save first.”

Proposition 11 (Too Big to Save First (Contingent Case))

*If interventions always lead to perfectly correlated outcomes \(s_1 = s_2\), it is socially efficient
to save the small fund first.*

5.2 Moral Hazard

Moral hazard is a big concern in government bailouts. Indeed, fund managers may divert
the capital injected by the government, or gamble by investing in projects with risk profiles
different from the pre-specification. We now demonstrate that our general cost specification
already encompasses many forms of moral hazard. In particular, we show managerial stealing
and risk shifting provide micro-foundations for the intervention cost. Moreover, by modeling
moral hazard, we enrich the model with fund managers’ utility function and endogenous
actions, making the analysis more realistic and relevant.

5.2.1 Cash Diversion

First consider the case in which the fund manager is able to divert a fraction \(\eta \in [0,1]\)
for any amount of liquidity \(\mu\) injected by the government. Suppose the fund manager gets
compensated a share of the surplus she generates for investors, and among the diverted
capital, she can consume \(f(\eta)\mu \leq \eta\mu\), where \(f : [0,1] \rightarrow [0,1]\) satisfies \(f'(\cdot) > 0\) and
\(f''(\cdot) \leq 0\). The rest \(\mu[\eta - f(\eta)]\) is inefficiently lost (iceberg costs), consistent with the
standard assumption in the literature that cash diversion is increasingly inefficient in the
amount diverted.\(^{27}\) Because the fund manager only cares about her own fund, she does
not internalize the intervention externality. Thus, to pin down the unique \(\eta\), she equalizes
the marginal benefit of keeping more injected liquidity in the fund, \(\frac{(1-c)\mu}{2B}\), to the marginal
benefit of stealing more \(f'(\eta)\mu\).

\(^{27}\)This specification captures the fact that the fraction of diversion matters for the efficiency loss. Alter-
natively, one could use \(f(\eta\mu)\), where \(f : [0,\mu] \rightarrow [0,\mu]\) satisfies \(f'(\cdot) > 0\) and \(f''(\cdot) \leq 0\), which implies the
diversion efficiency depends on the total amount. This alternative specification does not affect our conclusion.
Under this setup, the optimal intervention problem is isomorphic to the problem solved earlier, where intervention incurs a cost $k(m)$ in the period. To see this, note the government is aware of the diverting technology. Therefore, to effectively inject m into the fund, the government needs to spend μ such that $(1-\eta)\mu = m$. Equivalently, injecting m into the fund costs the government $k(m) = k_o \left(\frac{m}{1-\eta} \right) - \frac{f(\eta)m}{1-\eta}$, where $k_o(\mu)$ is other social costs not associated with cash diversion. If k_o is increasing and convex in m, adding the moral hazard cost preserves these properties, consistent with our cost specification.

5.2.2 Risk Shifting

Now consider the case in which the fund manager could secretly choose projects with survival threshold $\theta + \Delta$ with a corresponding private payoff $\alpha \Delta$ conditional on success after paying the promised payoffs to investors (or some asymmetric split of the additional payoff). The project is thus more illiquid and risky (failure probability is higher), but the fund manager has an incentive to shift the risk, because she captures the upside (limited liability means she does not incur additional loss upon failure). Let the fixed cost of risk shifting be $c_o \geq 0$, and then given the liquidity injection m, the optimal risk shifting is

$$\Delta^* = \arg\max_{\Delta} \left[\alpha \Delta \frac{1-c + m - \Delta}{2B} - c_o \mathbb{I}_{\{\Delta > 0\}} \right] = \frac{1-c + m}{2} \mathbb{I}_{\{c_o < \frac{\alpha(1-c+m)^2}{8B}\}}.$$ \hspace{1cm} (11)

The greater the intervention, the greater the distortion in investment by the manager. Compared to the case in which moral hazard is absent, the welfare is reduced by

$$\left[c_o + \frac{\Delta^*(1-c)}{2B} - \frac{1-c + m - \Delta^*}{2B} \alpha \Delta^* \right] \mathbb{I}_{\{c_o < \frac{\alpha(1-c+m)^2}{8B}\}},$$ \hspace{1cm} (12)

where the first term is the reduction in welfare due to a lower probability of fund survival, and the second term is the private benefit to the fund manager. For simplicity, we assume $c_o > \frac{\alpha(1-c)^2}{8B}$ and α is sufficiently small (e.g., $\alpha < \frac{1-c}{1-c+m}$) so that moral hazard is only induced by the intervention. Then the moral hazard cost can be nested in $k(m) = k_o(m) + \left[c_o + \frac{-am^2+2m(1-c)(1-\alpha)+(2-\alpha)(1-c)^2}{8B} \right] \mathbb{I}_{\{c_o < \frac{\alpha(1-c+m)^2}{8B}\}}$. Once again, $k(m)$ is weakly increasing and convex in m.
Because the sum of increasing and convex functions is still increasing and convex, our general cost function accommodates multiple types of moral hazard. In other words, moral hazard considerations constitute and motivate the general cost function we use. For example, when the moral hazard of risk shifting and stealing are both present, their costs can still be represented by the general cost function in our model, and such moral hazard costs motivate the cost specification.

5.3 Imperfectly Correlated Fundamentals

So far we have assumed $\theta_1 = \theta_2$. What if the fundamentals across the two periods are positively correlated but non-identical? One way of introducing imperfectly correlated fundamentals is to simply make θ_2 a noisy version of θ_1. However, this formulation is generally not analytically tractable. Therefore, we use a specific binary noise structure to show our results extend to the case of imperfectly correlated fundamentals.

Suppose at the beginning of period 2, everyone learns whether the fundamental in period 2 is identical to that in period 1, or just an independent one. In other words, whether period 2 is an extension of period 1’s coordination game, or an independent one becomes public. Specifically, we assume that with probability q, $\theta_2 = \theta_1$, and with probability $1 - q$, θ_2 is a random draw from $[-B, B]$ independent of θ_1. Our baseline model corresponds to $q = 1$. In the case in which $q = 0$, the intervention problem is symmetric, which yields our benchmark policy $m_1^* = m_2^*$. With $q \in (0, 1)$, the intuition for all the implications continues to apply and the previous results are only affected qualitatively.

To see how m_1^* is affected by the correlation, we note

$$m_1^* = \arg\max_{m_1} \left\{ W_1 - K(m_1, 0) + q \max_{m_2} \mathbb{E}[W_2 - (K(m_1, m_2) - K(m_1, 0)) | \theta_2 = \theta_1] \
ight.$$
$$+ (1 - q) \max_{m_2} \mathbb{E}[W_2 - (K(m_1, m_2) - K(m_1, 0)) | \theta_2 \perp \theta_1] \right\}$$

$$= \arg\max_{m_1} \left\{ W_1 - K(m_1, 0) + q \max_{m_2} \mathbb{E}[W_2 - (K(m_1, m_2) - K(m_1, 0)) | \theta_2 = \theta_1] \right\},$$

where we have used $K_{12} = 0$. Direct inspection tells us the government’s objective is exactly $Y(m_1; q)$, defined in Equation (10). Similar to Proposition 7, the correlation positively
increases \(m_1^* \) when the cost functions are comparable (Corollary 2); the correlation reduces \(m_1^* \) if the cost functions are asymmetric (Corollary 3); otherwise, the effect could be non-monotone, as illustrated in Figures 6 to 8 (replacing \(\chi \) by \(q \)). Thus, how the correlation in the fundamental affects endogenous government intervention also depends on the intervention costs.

5.4 Multi-Period Interventions

The economic mechanism and intuition can be generalized to a multi-period setup. While such an exercise is beyond the scope of this paper and does not add to the insights we bring, we briefly describe the result of emphasizing early interventions.

Suppose that the economy lasts for \(n \) periods with the same fundamental \(\theta \). In each period, there is a continuum of investors of measure 1 who choose whether to stay or run. The government, equipped with total resources \(M \), aims to maximize the aggregate welfare across \(n \) periods. If \(n = 2 \), the setup returns to the main section.

Suppose the proposed intervention plan equally divides the total resources across \(n \) periods, \(m_1 = m_2 = \cdots = m_n = \frac{M}{N} \), then it is clear that the intervention outcomes in all periods are perfectly correlated: \(s_1 = s_2 = \cdots = s_n \). As a result, the government has incentive to increase \(m_1 \), which consequently raises the possibility of \(\Pr(s_1 = 1) \), as well as \(\Pr(s_i = 1) \) for \(i = 2, \cdots, n \).

Given optimal intervention \(m_1^* > \frac{M}{n} \), the government now allocates the remaining resources \(M - m_1^* \) across \(n - 1 \) periods. A similar argument tells us that \(m_2^* > \frac{M-m_1^*}{n-1} \). Along the line of the analysis, we could reach the result \(m_1^* > m_2^* > \cdots m_n^* \). In other words, optimal intervention plan always emphasizes early intervention.

5.5 Endogenous Multiplicity

In this section, we relate our paper to Angeletos, Hellwig, and Pavan (2007) and explain why our baseline model yields unique equilibrium. We show how equilibrium multiplicity is restored via a mechanism isomorphic to the one in their paper. More importantly, we highlight how equilibrium multiplicity could be endogenized by intervention policy.
Angeletos, Hellwig, and Pavan (2007) show that multiple equilibria emerge under the same conditions that guarantee uniqueness in static global games. The results rely on endogenous learning from regime survivals and exogenous learning from private news that arrives over time. Two elements are necessary for this multiplicity result. First, private information interacts with endogenous learning from earlier coordination outcomes. Second, the private information gets very precise as agents continuously receive private signals about the fundamental. Without the first element, the game is equivalent to one in which agents receive only one precise private signal.\footnote{The variance of the signal is $\text{Var} \left(\frac{s^2}{n} \right)$ with n signals.} Our paper shows the equilibrium results without the second element. We show that multiple equilibria may exist when private signals are very precise. That is, when δ gets very small. Likewise, Angeletos, Hellwig, and Pavan (2007) show that there always exists an equilibrium in which no attack occurs after the first period, and this would be the unique equilibrium if agents did not receive any private information after the first period.\footnote{One can easily write a two-period version of Angeletos, Hellwig, and Pavan (2007) and show this is the only equilibrium if the private signal is sufficiently imprecise.}

To see this, note that the set of parameters we have examined corresponds to imprecise signals ($2\delta > 1$ and $\frac{1}{1+2\delta} < c < \frac{2\delta}{1+2\delta}$). Moreover, the signal does not get more precise because agents are non-overlapping. If we relax the parameter assumptions, or allow agents’ signals to become more precise over time, multiplicity follows. Proposition 12 complements Propositions 1 and 2.\footnote{Technically, multiple equilibria resurface because we can apply the argument of iterated deletion of dominated regions only from one end of θ space. Despite this, with slight modifications on the intervention cost functions, the main intuitions for the results from earlier sections still apply as long as we are consistent with equilibrium selection.}

Proposition 12 (Equilibria with general δ and c)

1. If $s_1 = S$ and $\frac{2\delta}{2\delta + 1} < c < 1$,

 (a) If $m_2 < m_1 - c$, the unique equilibrium is the Subgame Equilibrium without Dynamic Coordination.
(b) If \(m_1 - c < m_2 < m_1 - 2\delta (1 - c) \), all three types of equilibria exist. However, in the Equilibrium with Partial Dynamic Coordination, the threshold \(\theta_2^* \) decreases with \(m_2 \).

(c) If \(m_1 - 2\delta (1 - c) < m_2 \), the unique equilibrium is the Subgame Equilibrium with Dynamic Coordination.

2. If \(s_1 = F \) and \(0 < c < \frac{1}{2\delta+1} \)

(a) If \(m_2 < m_1 + 2c\delta \), the unique equilibrium is the Subgame Equilibrium with Dynamic Coordination.

(b) If \(m_1 + 2c\delta < m_2 < m_1 + 1 - c \), all three types of equilibria exist. However, in the Equilibrium with Partial Dynamic Coordination, the threshold \(\theta_2^* \) decreases with \(m_2 \).

(c) If \(m_2 > m_1 + 1 - c \), the unique equilibrium is the Subgame Equilibrium without Dynamic Coordination.

Our baseline model also differs from Angeletos, Hellwig, and Pavan (2007) in two additional ways: the government’s action is endogenous and the private signal is bounded.\(^{31}\) Government’s action therefore affects equilibrium selection and learning. In particular, when the government’s intervention induces equilibria with full or no dynamic coordination, it shuts down the interaction between private signal and public learning. Consequently, the equilibrium is unique even if the signal is infinitely precise. In this regard, the government’s endogenous intervention can determine the equilibrium multiplicity. Next, we discuss the case when private signals follow Normal distribution which are unbounded.

5.6 Normally Distributed Signals

In this subsection, we discuss the results when the private signals follow Normal distribution, i.e., \(\varepsilon_i \sim N (0, \delta) \).\(^{32}\) We still assume that investors are non-overlapping to keep matters

\(^{31}\) (Uniform \([-\delta, \delta]\)) in our model but unbounded support in their model \((N (z, \frac{1}{z})) \).

\(^{32}\) We use uninformative prior belief which is common in global games literature.
comparable with our baseline model.33 We characterize the equilibrium in each period and emphasize that government intervention in period 1 still has a dynamic coordination effect in period 2.

Lemma 5 below summarizes equilibrium outcomes in two periods. Detailed analysis can be found in Appendix C.

Lemma 5

Equilibrium when signals follow Normal distribution

1. Given m_1, there exists unique equilibrium thresholds in period 1:

 \[
 \theta_1^* = 1 + m_1 - c \\
 x_1^* = 1 + m_1 - \delta \Phi^{-1}(c).
 \]

2. Given (m_1, m_2) and $s_1 = S$,

 (a) When $m_2 > m_1 - c$, $(\theta_2^* = \theta_1^*, x_2^* = \infty)$ consists a threshold equilibrium.

 (b) Equilibrium strategies (θ_2^*, x_2^*) which satisfy $\theta_2^* < \theta_1^*$ and $x_2^* < \infty$ may or may not exist. If they exist, they can be non-unique.

Table 2 presents the local comparative statics when there exists a unique equilibrium strategy. When m_1 increases from 0.7 to 0.9, both θ_2^* and x_2^* decrease, validating the dynamic coordination effect.

<table>
<thead>
<tr>
<th>m_1</th>
<th>0.7</th>
<th>0.75</th>
<th>0.8</th>
<th>0.85</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ_2^*</td>
<td>0.7602</td>
<td>0.6981</td>
<td>0.6693</td>
<td>0.6511</td>
<td>0.6384</td>
</tr>
<tr>
<td>x_2^*</td>
<td>0.9667</td>
<td>0.8222</td>
<td>0.7565</td>
<td>0.7152</td>
<td>0.6866</td>
</tr>
</tbody>
</table>

Other parameters are $c = 0.5$, $\delta = 0.5$, $m_2 = 0.1$.

33The case when investors perfectly overlap can be identically analyzed as one in which $\varepsilon_1 \sim N(0, \frac{\delta}{2})$. All results in this section are unchanged.
5.7 Various Forms of Interventions

In the model, we have interpreted intervention as liquidity injection. We argue below that our model captures a broader array of interventions that are commonly used (Bebchuk and Goldstein, 2011; Diamond and Rajan, 2011).

Direct lending and investing in borrower funds This is exactly the interpretation in our model. During the financial crisis of 2008-2009, the US government directly participated in the commercial paper market through direct purchasing. Our general cost function to a large extent captures investment returns to the government and some inefficiencies discussed in Bebchuk and Goldstein (2011).

Direct capital infusion to investors Governments around the globe have injected capital to both retail and institutional investors. For instance, the U.S. Troubled Asset Relief Program (TARP) provided about US$250 billion to banks, and the UK injected about US$90 billion to its major banks. Tax breaks and related measures represent capital infusion to retail investors directly. To map these policies into our model, suppose the government injects a fraction α of investors’ existing capital. This changes the capital of each investor from 1 unit to $1 + \alpha$ without altering the investor’s optimization problem. Consequently, the one period survival threshold becomes $\theta^* = (1 - c)(1 + \alpha)$. We can relabel $m = (1 - c)\alpha$ and the model solutions are equivalent. Thus, the intervention again increases the probability of survival.

Government guarantees During the financial crisis, governments used guarantees that are similar to FDIC to limit the potential losses of the lenders. Specifically in our model, suppose that the government guarantees a proportion ξ of a lender’s or investors losses, then the lender who stays (rolls over) receives the return R when the fund survives, and $-(1 - \xi)c$ if it fails. Since our investors are risk neutral, the survival threshold now is $\theta^* = \frac{1 - c}{1 - c\xi}$. Again, we can relabel $m = \frac{c(1 - c)\xi}{1 - c^2}$ and this is equivalent to an intervention that increases the probability of success.
Interest Rate Reduction During the financial crisis, the Fed Reserve Board cut the fed funds rate from 4.25% in Jan 2008 to 1% in Oct 2008. Many other countries took similar measures in the face of a global contraction in lending. In the model, this is equivalent to reducing r, the payoff for not investing. Under risk-neutrality, it is equivalent to increasing the survival probability through changing c, which is exactly the role of m in our model.

6 Conclusion

How should a benevolent government’s policy for multiple interventions in a dynamic environment? Through the lens of sequential global games in which governments are large players who mitigate coordination failures, we establish the existence of and characterize the equilibria, and show government interventions can affect coordination both contemporaneously and dynamically. A stronger initial intervention helps subsequent interventions through increasing the likelihood of positive news, but also leads to negative conditional updates. Our results suggest optimal intervention often emphasizes initial action, validating the conventional wisdom. However, depending on costs across interventions, an initial intervention could have either a positive or negative informational externality on subsequent coordination. Finally, some funds are “too big to save first,” because they benefit more from resolution of uncertainty about the fundamentals, and first intervening in smaller funds leads to lower cost to generate this informational structure. Our paper thus has policy relevance to various intervention programs, such as the bailouts of money market mutual funds and of the financial commercial papers market during the 2008 financial crisis.

The dynamic learning mechanism and thus the information-structure effect also apply to broader contexts, such as interventions in currency attacks, credit market freezes, cross-sector industrialization, regulatory union, and green energy development. Our discussion therefore opens several avenues for future research. For example, how does the government simultaneously design information structure and signal private knowledge about economic fundamentals? Moreover, this paper only considers common forms of interventions. Understanding the optimal contingent intervention not only is of theoretical interest, but also provides new insights and guidance to policymakers.
References

Li, Zhao, and Kebin Ma, 2016, A theory of endogenous asset fire sales, bank runs, and contagion, .

Appendix

A Derivations and Proofs

A.1 Proof of Lemma 1

Suppose a threshold \(x^* \in \mathbb{R} \) exists such that each agent invests if and only if \(x \leq x^* \). The measure of agents who invest is thus

\[
A(\theta) = \Pr(x \leq x^* | \theta) = \begin{cases}
0 & \text{if } \theta > x^* + \delta \\
\frac{x^* - (\theta - \delta)}{2\delta} & \text{if } x^* - \delta \leq \theta \leq x^* + \delta \\
1 & \text{if } \theta < x^* - \delta.
\end{cases}
\] (14)

It follows that the investment succeeds if and only if \(\theta \leq \theta^* \), where \(\theta^* \) solves

\[
A(\theta^*) + m = \theta^*.
\] (15)

By standard Bayesian updating, the posterior distribution about \(\theta \) conditional on the private signal is also a uniform distribution with bandwidth \(2\delta \). Therefore, the posterior probability of investment success is

\[
\Pr(s = S | x) = \Pr(\theta \leq \theta^* | x) = \begin{cases}
0 & \text{if } x > \theta^* + \delta \\
\frac{\theta^* - (x - \delta)}{2\delta} & \text{if } \theta^* - \delta \leq x \leq \theta^* + \delta \\
1 & \text{if } x < \theta^* - \delta.
\end{cases}
\] (16)

For the marginal investor who is indifferent between investing or not, his signal \(x^* \) satisfies

\[
\Pr(s = S | x^*) = c.
\] (17)

Jointly solving equations (15) and (17), we obtain the two thresholds:

\[
\begin{cases}
\theta^* = 1 + m - c \\
x^* = 1 - c + \delta - 2c\delta + m.
\end{cases}
\] (18)

A.2 Proof of Lemma 2

Proof. “if” \(\Leftarrow \)

If \(m_2 > m_1 - c \), and if all agents know other agents will adopt a threshold strategy \(x_2^* = \infty \),

\[
A_2 + m_2 = 1 + m_2 > 1 + m_1 - c = \theta_1^* > \theta.
\] (19)

Therefore, the investment succeeds with probability 1. Therefore, it is individually rational for each agent to set \(x_2^* = \infty \).

“only if” \(\Rightarrow \)
We prove by contradiction. Suppose an equilibrium exists in which all agents adopt a threshold \(x_2^* = 1 + m_1 - c + \delta \) when \((m_1 - c) - m_2 = \Delta > 0 \). Therefore, any agent with a signal \(x_2 < \theta_1^* + \delta \) will invest. In other words,
\[
\Pr (\theta < 1 + m_2 | x_2, \theta < \theta_1^*) \geq c,
\]
holds for any \(x_2 \).

Consider an agent who observes \(\hat{x}_2 = m_1 + 1 - c + \delta - \frac{\Delta}{2} \). Such an agent exists when \(\theta \in (m_1 + 1 - c + \delta - \frac{\Delta}{2}, m_1 + 1 - c + \delta). \) Apparently,
\[
\Pr (\theta < 1 + m_2 | x_2 = \hat{x}_2, \theta < \theta_1^*) \geq c = 0 < c
\]
which violates the assumption that all agents invest irrespective of their signals.

\[\square\]

A.3 Proof of Lemmas 3, 4, Propositions 1, 2, and 12

Here we solve the equilibrium in period 2 under both \(s_1 = S \) and \(s_1 = F \), and under all parameter values. The solutions directly prove the lemmas and propositions.

Our solutions take two steps. First, we assume a solution pair \((\theta_2^*, x_2^*)\) exists and derive the equilibrium values. Second, we check the conditions these solutions must satisfy, and thus derive the parameter ranges such that they indeed constitute a solution.

Case 1: The Period-1 fund survives: \(s_1 = S \)

1. If \(\theta_1^* - 2\delta < \theta_2^* < \theta_1^* \), then in equilibrium,
\[
\theta_2^* - m_2 = A(\theta_2^*) = \begin{cases}
1 & \text{if } x_2^* - \theta_2^* > \delta \\
\frac{x_2^*-(\theta_2^* - \delta)}{2\delta} & \text{if } -\delta < x_2^* - \theta_2^* < \delta \\
0 & \text{if } x_2^* - \theta_2^* < -\delta
\end{cases}
\]

and

\[
c = \begin{cases}
1 & \text{if } x_2^* < \theta_2^* - \delta < \theta_2^* < \theta_1^* \\
\frac{x_2^*-(\theta_2^* - \delta)}{2\delta} & \text{if } \theta_2^* - \delta < x_2^* < \theta_1^* - \delta \\
\frac{x_2^*-(\theta_2^* - \delta)}{2\delta} & \text{if } \theta_1^* - \delta < x_2^* < \theta_2^* + \delta \\
0 & \text{if } \theta_2^* + \delta < x_2^*.
\end{cases}
\]

Jointly solving the above equations, the solutions are as follows

(a) \(\theta_2^* = 1 + m_2 - c \) and \(x_2^* = 1 + m_2 - c + \delta (1 - 2c) \). The solution exists if \(m_1 - 2\delta < m_2 < m_1 - 2\delta (1 - c) \).

(b) \(\theta_2^* = 1 + m_2 - c + \frac{c[m_2-m_1+2\delta(1-c)]}{2\delta-c(1+2\delta)} \) and \(x_2^* = 1 + m_2 - c + \delta (1 - 2c) + \frac{c(1+2\delta)[m_2-m_1+2\delta(1-c)]}{2\delta-c(1+2\delta)} \).

The solution exists in two cases: 1) \(m_1 - 2\delta (1 - c) < m_2 < m_1 - c \) if \(0 < c < \frac{2\delta}{1+2\delta} \).
\[m_1 - c < m_2 < m_1 - 2\delta (1 - c) \text{ if } \frac{2\delta}{1+2\delta} < c < 1 \]

2. If \(\theta_2^* < \theta_1^* - 2\delta \), then in equilibrium,

\[
\theta_2^* - m_2 = A(\theta_2^*) = \begin{cases}
1 & \text{if } x_2^* - \theta_2^* > \delta \\
\frac{x_2^* - (\theta_2^* - \delta)}{2\delta} & \text{if } -\delta x_2^* - \theta_2^* < \delta \\
0 & \text{if } x_2^* - \theta_2^* < -\delta
\end{cases}
\]

and

\[
c = \begin{cases}
1 & \text{if } x_2^* < \theta_2^* - \delta \\
\frac{x_2^* - (\theta_2^* - \delta)}{2\delta} & \text{if } \theta_2^* - \delta < x_2^* < \theta_2^* + \delta \\
0 & \text{if } \theta_2^* + \delta < x_2^*.
\end{cases}
\]

Jointly solving the above equations, the solutions are as follows:

(a) \(\theta_2^* = 1 + m_2 - c \) and \(x_2^* = 1 + m_2 - c + \delta (1 - 2c) \). The solution exists if \(m_2 < m_1 - 2\delta \).

Combining the above results, we prove Lemmas 3, 4, Proposition 1, and half of Proposition 12. The next case finishes the rest of the proof.

Case 2: The Period-1 fund fails: \(s_1 = F \)

The analysis is identical. We will list the results as below.

(a) \(\theta_2^* = 1 + m_2 - c - \frac{(1-c)(m_1+2c\delta-m_2)}{c(1+2\delta)-1} \) and \(x_2^* = 1 + m_2 - c + \delta (1 - 2c) - \frac{(1-c)(1+2\delta)(m_1+2c\delta-m_2)}{c(1+2\delta)-1} \). The solution exists in two cases: 1) \(m_1 + 2c\delta < m_2 < m_1 + (1 - c) \) if \(0 < c < \frac{1}{1+2\delta} \); 2) \(m_1 + (1 - c) < m_2 < m_1 + 2c\delta \) if \(\frac{1}{1+2\delta} < c < 1 \).

(b) \(\theta_2^* = 1 + m_2 - c \) and \(x_2^* = 1 + m_2 - c + \delta (1 - 2c) \). The solution exists if \(m_1 + 2c\delta < m_2 < m_1 + 2\delta \).

(c) \(\theta_2^* = 1 + m_2 - c \) and \(x_2^* = 1 + m_2 - c + \delta (1 - 2c) \). The solution exists if \(m_2 > m_1 + 2\delta \).

Combining this result, Proposition 2 and the other parts of 12 naturally follow.

A.4 Proof of Proposition 5

Plugging in the government’s budget constraint, we are able to obtain the aggregate social welfare as a function of \(m_1 \). As a by-product, we are also able to calculate the net benefit of initial intervention. Lemma 6 summarizes the results.

Lemma 6

Aggregate social welfare \(W \) and net benefit of initial intervention \(\frac{\partial W}{\partial m_1} \) when \(m_1 + m_2 = M \)
1. If $m_1 > \frac{M+2\delta(1-c)}{2}$,

\[W = W_1 + \Pr(s_1 = S) W_{2S}^{pc} + \Pr(s_1 = F) W_{2F}^{c} \]
\[= \frac{1-c}{2B} [2 + 2B - 2c(1+\delta) + M] \]
\[\frac{\partial W}{\partial m_1} = 0. \]

This case only exists for $M > 2\delta (1-c)$.

2. If $\frac{M+c}{2} < m_1 < \frac{M+2\delta(1-c)}{2}$,

\[W = W_1 + \Pr(s_1 = S) W_{2S}^{pc} + \Pr(s_1 = F) W_{2F}^{c} \]
\[= \frac{1-c}{2B} [2 + 2B - c(2 + \delta) + 2m_1 + \delta c (c + M - 2m_1)^2 - 2\delta [c - 2(1-c)\delta] (c + M - 2m_1)] \]
\[\frac{\partial W}{\partial m_1} = \frac{(1-c) [2c (1+2\delta) [c - 2(1-c)\delta] - 4c\delta (c + M - 2m_1)]}{2B [c - 2(1-c)\delta]^2} < 0. \]

This case only exists for $M > c$.

3. If $\frac{M-(1-c)}{2} < m_1 < \frac{M+c}{2}$,

\[W = W_1 + \Pr(s_1 = S) W_{2S}^{c} + \Pr(s_1 = F) W_{2F}^{c} \]
\[= \frac{1-c}{2B} [2 + 2B - c(2 + \delta) + 2m_1] \]
\[\frac{\partial W}{\partial m_1} = \frac{1-c}{B} > 0. \]

This case always exists.

4. If $\frac{M-2\delta}{2} < m_1 < \frac{M-(1-c)}{2}$,

\[W = W_1 + \Pr(s_1 = S) W_{2S}^{c} + \Pr(s_1 = F) W_{2F}^{pc} \]
\[= \frac{1-c}{2B} \left[2 + 2B - c(2 + \delta) + 2m_1 + \frac{c\delta (-1 + c + M - 2m_1)^2}{(-1 + c + 2c\delta)^2} \right] \]
\[\frac{\partial W}{\partial m_1} = \frac{1-c}{2B} \left[2 - \frac{4c\delta (c - 2m_1 + M - 1)}{(2c\delta + c - 1)^2} \right]. \]

This case only exists for $M > 1-c$. We note the derivative changes sign from negative to positive exactly once in this region.
5. If \(m_1 < \frac{M - 2c\delta}{2} \),

\[
W = W_1 + \Pr (s_1 = S) W_{2S} + \Pr (s_1 = F) W_{2F}^{nc}
= \frac{1 - c}{2B} [2 + 2B - 2c(1 + \delta) + M]
\]

\[
\frac{\partial W}{\partial m_1} = 0.
\]

This case only exists for \(M > 2c\delta \).

Given that the welfare function is continuous, the maximum welfare in case 3 is higher than case 1 and 5, and how welfare varies with respect to \(m_1 \) in region 2 and 4, the result in the proposition follows.

A.5 Proof of Proposition 6

Proof. Suppose the optimal \(m_1 < m_2 \). We show this leads to a contradiction. Notice welfare \(W_1 + E[W_2] - K(m_1, m_2) \) is

\[
L = -K(m_1, m_2) + \frac{1 - c}{2B} \begin{cases}
2(m_1 + 1 - c + B) - c\delta & \text{if } m_2 < m_1 + (1 - c) \\
2(m_1 + 1 - c + B) - c\delta + \frac{c\delta(-1 + c - m_1 + m_2)^2}{(1 + c + 2c\delta)^2} & \text{if } m_1 + (1 - c) < m_2 < m_1 + 2c\delta \\
m_1 + m_2 + 2(1 - c + B - c\delta) & \text{if } m_2 > m_1 + 2c\delta.
\end{cases}
\]

(20)

We want to show the above is not optimal, because it is strictly dominated by the welfare at \((m'_1, m'_2) = (\frac{1}{2}[m_1 + m_2], \frac{1}{2}[m_1 + m_2 - 2c]),\) which equals

\[
L' = \frac{1 - c}{2B} [m_1 + m_2 + 2(1 - c + B) - c\delta] - K\left(\frac{1}{2}(m_1 + m_2), \frac{1}{2}[m_1 + m_2 - 2c]\right).
\]

(21)

The cases in which \(m_2 < m_1 + (1 - c) \) and \(m_2 > m_1 + 2c\delta \) are straightforward. It remains to be shown that \(W' > W \) when \(m_1 + (1 - c) < m_2 < m_1 + 2c\delta \). Note that

\[
sgn(L' - L) = sgn \left[(m_2 - m_1) - \frac{c\delta(-1 + c - m_1 + m_2)^2}{(1 + c + 2c\delta)^2} \right]
= sgn \left\{ -c\delta \left((-1 + c)^2 + (m_2 - m_1)^2 + 2(-1 + c)(m_2 - m_1) \right) + (m_2 - m_1)(-1 + c + 2c\delta)^2 \right\}
= sgn \left\{ -c\delta (m_2 - m_1)^2 + \left[2c\delta (1 - c) + (-1 + c + 2c\delta)^2 \right] (m_2 - m_1) - c\delta (-1 + c)^2 \right\}.
\]

It suffices to show \(sgn \left\{ -c\delta (m_2 - m_1)^2 + \left[2c\delta (1 - c) + (-1 + c + 2c\delta)^2 \right] (m_2 - m_1) - c\delta (-1 + c)^2 \right\} > 0 \) at both \(m_2 = m_1 + 2c\delta \) and \(m_2 = m_1 + (1 - c) \), which is straightforward algebra.

Notice that when the cost is separable and symmetric,

\[
K(m_1, m_2) - K\left(\frac{1}{2}[m_1 + m_2], \frac{1}{2}[m_1 + m_2 - 2c]\right)
= \left[K(m_2) - K\left(\frac{1}{2}[m_1 + m_2]\right) \right] - \left[K\left(\frac{1}{2}[m_1 + m_2 - 2c]\right) - K(m_1) \right] > 0
\]

(22)
due to K being weakly convex and increasing. The above also holds when $\frac{1}{2}|m_1 + m_2 - 2c|$ is replaced by $\frac{1}{2}(m_1 + m_2)$ and K only depends on $m_1 + m_2$ and $|m_1 - m_2|$ and is increasing in $|m_1 - m_2|$. Therefore initial intervention is strictly emphasized under those conditions.

A.6 Proof of Proposition 7 and Corollaries 2 and 3

Proof. The following identity holds:

$$ \frac{\partial}{\partial \chi} Y(m_1; \chi) = \max_{m_2} \left[\mathbb{E}[W_2(m_1, m_2) - (K(m_1, m_2) - K(m_1, 0))] \right] $$

$$ = \left[I_{[m_2 > m_1 + 1 - c]} + I_{[m_1 > c]} I_{[0 < m_2 < m_1 - c]} \right] \left[\mathbb{E}[W_2(m_1, m_2^*)] - (K(m_1, m_2^*) - K(m_1, 0)) \right] $$

$$ + I_{[m_1 \geq c]} I_{[m_2 = m_1 - c]} \left[\mathbb{E}[W_2(m_1, m_1 - c)] - (K(m_1, m_1 - c) - K(m_1, 0)) \right] $$

$$ + I_{[m_1 \leq c]} I_{[m_2 = 0]} \mathbb{E}[W_2(m_1, 0)]. \quad (23) $$

Note that fixing m_1, increasing m_2 does not increase welfare $\mathbb{E}[W_2]$ in $[m_1 - c, m_1 + 1 - c]$; thus, the four indicator products sum to 1. This is seen in Figure 5, with the four indicators corresponding to $m_2 > m_1 + 1 - c$, $m_2 < m_1 - c$, $m_2 = m_1 - c$, and $m_1 - c < m_2 < m_1 + 1 - c$, respectively. The first term is non-increasing in m_1, whereas the last two terms are non-decreasing. In general, the overall expression is non-monotone in m_1 because its value could jump up or down when the indicators change values. However, if parameters are such that one indicator function is always 1, the expression is monotone in m_1 and we could draw robust comparative statics. If one of the first two indicators is always 1 as we vary m_1, Y has decreasing differences in m_1 and χ; if one of the last two indicators is always 1, Y has increasing differences. The conclusions then follow from Theorem 2.1 in Athey, Milgrom, and Roberts (1998).

Corollaries 2 and 3 provide some examples of sufficient conditions that lead to underintervention or overintervention globally when the government is myopic. We prove them below, but note that other sufficient conditions exist, especially ones on cost parameters defined through levels rather than derivatives.

If $K_1(c, \cdot) > \frac{1 - c}{b}$, we have $m_1^* < c$ because the maximum marginal benefit of m_1 on investors’ welfare is $\frac{1-c}{b}$, $K_1(c, \cdot) \geq \frac{1-c}{b}$ implies $m_1^* \leq c$. Therefore, $m_2^* > m_1 - c$ for sure and $W_{2S} = (1 - c)$. Given $K_2(\cdot, c(1 + 2\delta)) < \frac{1-c}{b \delta 1+2\delta}$, we have $K(\cdot, c(1 + 2\delta)) < \frac{c(1+c\delta)}{2b}$, then $\frac{b - m_1 - 1 + c}{2b} W_{2F} > K(m_1, m_1 + 2\delta c) - K(m_1, 0)$. Thus, the increase in W_{2F} exceeds the intervention cost at $m_2 = m_1 + 2\delta c$, $m_2^* > m_1 + 1 - c$. When this happens, we know $\frac{\partial Y}{\partial \chi}$ equals the first term with the first indicator product being one, and is non-increasing in m_1. Thus, Y has decreasing differences in m_1 and χ.

Alternatively, if $K_1(b, \cdot) > \frac{1-c}{b}$, we have $m_1^* < b$ for b potentially bigger than c. If the cost in the second intervention is sufficiently small such that $m_2^* > b + 2c\delta > 2c\delta + m_1^*$, we also have the first indicator product being 1, and Y has decreasing differences in m_1 and χ. One sufficient condition is $[W_2(m_1^*, m_1^* + 2c\delta) - W_2(m_1^*, m_1^* - c)] / c(1 + 2\delta) > K_2(b + 2c\delta)$, that is, $K_2(b + 2c\delta) < \frac{(1-c)\delta}{2b(1+2\delta)}$.

Next, for the last indicator to be 1 always, $K_1(c, \cdot) > \frac{1-c}{b}$. In addition, $K_2(\cdot, 1 - c) \geq \frac{1-c}{b \delta 2c\delta + c - 1}$ is a sufficient condition for $m_2^* = 0$ because this implies the cost exceeds the benefit at both $m_2 = 1 - c + m_1$ and $m_2 = m_1 + 2c\delta$, and the convexity of K in m_2 excludes $m_2^* > 1 - c + m_1$. Then $\frac{\partial Y}{\partial \chi}$ equals the last term and is non-decreasing in m_1. We could alternatively use $K(\cdot, 1 - c) \geq \frac{c(1-c)\delta}{2b}$ as a sufficient condition on cost, rather than on the derivative. The same goes for other sufficient conditions that we provide in this proposition.
Next, if $K_1(b,\cdot) > \frac{1-c}{B}$ and $K_1(c,\cdot) < \frac{1-c}{B} \frac{6-4(1+2\delta)}{25-c(1+2\delta)} \leq \frac{\partial Y}{\partial m_1}$ for some $b > c$, we have $b > m^*_1 > c$. On the one hand, if, in addition, the minimum marginal benefit in region $m_2 \leq m^*_1 - c$ is bigger than the maximum marginal cost, that is, $\min \{ \frac{1-c}{2B} \frac{2\delta(1-c)}{25-c(1+2\delta)} \} \geq \frac{1-c}{2B} \geq K_2(\cdot, b - c) > K_2(\cdot, m_1 - c)$, we have $\mathbb{E}[W_2] - (K(m_1, m_2) - K(m_1, 0))$ increasing in the entire region of $[0, m_1 - c]$. Moreover, if $K_2(m^*_1, m^*_1 + 1 - c) > K_2(\cdot, 1) \geq \frac{(1-c)\delta}{2(2\delta + c - 1)}$, the lower bound on the marginal cost is weakly bigger than the maximum marginal benefit (RHS) in the region $m_2 \geq 1 - c + m^*_1$. Therefore, $m^*_2 = m^*_1 - c$ and the third indicator product is always 1. Y has increasing differences in m_1 and χ.

On the other hand, $K_2(\cdot, 0) > \frac{1-c}{2B} \frac{\delta}{25-c(1+2\delta)}$ implies $\frac{1-c}{2B} \frac{2\delta(1-c)}{25-c(1+2\delta)} < K_2(m_1, m_1 - c)$, which means the maximum marginal benefit in the region $m_2 \leq m^*_1 - c$ taken at equality is less than the marginal cost. Thus, $m^*_2 < m^*_1 - c$ and the second indicator product is always 1. Y has decreasing differences in m_1 and χ.

These sufficient conditions are stated in the corollaries. We note that instead of directly computing the derivatives for the first term in $\frac{\partial Y}{\partial \chi}$, when m^*_1 is interior, we can apply the Envelope theorem to compute the partial derivative in m_1 of $\mathbb{E}[W_2(m_1, m_2)] - (K(m_1, m_2) - K(m_1, 0))$. Because $K_{12} = 0$, we know the partial derivative must be negative in the corresponding regions from Figure 3.

\section*{A.7 Proof of Proposition 8}

\begin{proof}
Define $n_1 = m_1$ and $n_2 = \frac{m_2}{\lambda}$. The two inequalities on funds’ survival translate into

\begin{align*}
A_1 + n_1 & \geq \theta \\
A_2 + n_2 & \geq \theta.
\end{align*}

For the remaining analysis, we prove a benevolent government that faces a hard budget constraint always prefers to first intervene in fund 1—the relatively smaller one.

We prove by backward induction. In the first step, we fix the choice of ι to be 1 and study the optimal intervention plan (n_1, n_2) when λ varies. The budget constraint shows as $n_1 + n_2\lambda = M$. We will show that for both $\lambda > 1$ and $\lambda \in (0, 1)$, the government will intervene up to $n_2 = n_1 - c$. The case in which $\lambda \in (0, 1)$ is simply isomorphic to $\iota = 2$. Thus, we establish the result that the government will always induce perfectly correlated intervention outcomes. In step 2, we compare different choices of $\iota \in \{1, 2\}$ and show the optimal intervention order: $\iota = 1$ if $\lambda > 1$ and $\iota = 2$ if $\lambda \in (0, 1)$. Thus, the smaller fund should always be bailed out first.

\textbf{Lemma 7}

Suppose $\iota = 1$, $\forall \lambda > 0$; the optimal intervention plan is

\begin{align*}
 n^*_1 &= \frac{M + c\lambda}{1 + \lambda} \\
 n^*_2 &= \frac{M - c}{1 + \lambda}.
\end{align*}

Under (n^*_1, n^*_2), intervention always leads to correlated outcomes: $s_1 = s_2$.

\begin{proof}
With heterogeneous fund sizes, the aggregate social welfare naturally follows.
\end{proof}

A-7
1. If \(n_1 > \frac{M + 2\delta \lambda (1-c)}{1+\lambda} \),

\[
W = \frac{1-c}{2B} \left\{ [1 + B - c(1+\delta)](1+\lambda) + M \right\}
\]

\[
\frac{\partial W}{\partial n_1} = 0.
\]

2. If \(\frac{M + c\lambda}{1+\lambda} < n_1 < \frac{M + 2\delta \lambda (1-c)}{1+\lambda} \),

\[
W = \frac{1-c}{2B} \left[1 + B - c(1+\delta) + n_1 \right] + \lambda \frac{1-c}{2B} \left[1 + n_1 - c + B + \frac{\delta c (c - n_1 + n_2)^2 + 2\delta (c - n_1 + n_2) [2\delta - c(1+2\delta)]}{[2\delta - c(1+2\delta)]^2} \right]
\]

\[
\frac{\partial W}{\partial n_1} < 0.
\]

3. If \(\frac{M - (1-c)\lambda}{1+\lambda} < n_1 < \frac{M + c\lambda}{1+\lambda} \),

\[
W = \frac{1-c}{2B} \left\{ (1 + B - c + n_1)(1+\lambda) - c\delta \right\}
\]

\[
\frac{\partial W}{\partial n_1} > 0.
\]

4. If \(\frac{M - 2c\delta \lambda}{1+\lambda} < n_1 < \frac{M - (1-c)\lambda}{1+\lambda} \),

\[
W = \frac{1-c}{2B} \left[1 + B - c(1+\delta) + n_1 \right] + \lambda \frac{1-c}{2B} \left[1 + n_1 - c + B \right] + \frac{\lambda (1-c)\delta (-1 + c - n_1 + n_2)^2}{2B (-1 + c + 2c\delta)^2}
\]

\[
\frac{\partial W}{\partial n_1} \text{ changes from negative to positive exactly once.}
\]

5. If \(n_1 < \frac{M - 2c\delta \lambda}{1+\lambda} \),

\[
W = \frac{1-c}{2B} \left\{ [1 + B - c(1+\delta)](1+\lambda) + M \right\}
\]

\[
\frac{\partial W}{\partial n_1} = 0.
\]

It easily establishes that \(\frac{\partial W}{\partial n_1} = 0 \) in case 1 and 5, \(\frac{\partial W}{\partial n_1} > 0 \) in case 3, and \(\frac{\partial W}{\partial n_1} < 0 \) in case 2. Similar to the proof of Proposition 5, the aggregate welfare in case 1 equals that in case 5. The maximal welfare is attained at the right boundary of case 3, that is, when \(n_1 = \frac{M + c\lambda}{1+\lambda} \).

Now that we have established the result on the optimal intervention plan \((n_1^*, n_2^*)\) conditional on \(\iota \), we can compare the social welfare under different \(\iota \).
If \(\iota = 1 \), the total social welfare directly follows optimal \((n_1^*, n_2^*) = \left(\frac{M + c\lambda}{1 + \lambda}, \frac{M - c}{1 + \lambda} \right)\)

\[
W_{\mid \iota = 1} = \frac{1 - c}{2B} \left[(1 + B - c + \frac{M - (1 - c)\lambda}{1 + \lambda}) (1 + \lambda) - c\delta \right].
\]

If \(\iota = 2 \), then \((n_1^*, n_2^*) = \left(\frac{M + c\lambda}{1 + \lambda}, \frac{M - c}{1 + \lambda} \right)\) and the total social welfare is

\[
W_{\mid \iota = 2} = \frac{1 - c}{2B} \left[(1 + B - c) (1 + \lambda) - c\lambda\delta + (1 + \lambda) \frac{M + c}{1 + \lambda} \right].
\]

Clearly,

\[
W_{\mid \iota = 1} - W_{\mid \iota = 2} = \frac{1 - c}{2B} c(1 + \delta)(\lambda - 1) > 0.
\]

\[\square\]

A.8 Proofs of Proposition 9

Proof. If \(s_1 = S \), increasing \(m_{2S} \) beyond \(m_1^* - c \) incurs additional cost without increasing \(E[W_2] \), as is clear in Figure 1. Thus, \(m_{2S}^* \leq m_1^* - c \). When \(s_1 = F \), the condition on the parameter means the marginal cost of increasing \(m_{2F} \) at \(1 - c \) exceeds the marginal benefit, which is bounded above by \(\frac{(1 - c)\delta}{1 - c} \). Thus, \(m_{2F}^* < 1 - c \). Subsequently, \(m_{2F}^* = 0 \) because increasing \(m_{2F} \) does not increase \(E[W_2] \), also clearly seen in Figure 1. \[\square\]

A.9 Proof of Proposition 10

In general, the government chooses \(\{m_1, m_{2S}, m_{2F}\} \) to maximize welfare. For a given \(m_1 \), define the objective as

\[
Y(m_1; \chi) = W_1 - K(m_1, 0) + \chi \left[\frac{B + m_1 + 1 - c}{2B} \max_{m_{2S}} [W_{2S} - (K(m_1, m_{2S}) - K(m_1, 0))] + \frac{B - m_1 - 1 + c}{2B} \max_{m_{2F}} [W_{2F} - (K(m_1, m_{2F}) - K(m_1, 0))] \right].
\]

(24)

Here, \(\chi \in [0, 1] \) measures how much the government cares about the fate of the second period’s fund.

Proof. The proof is similar to that in Proposition 7 and Corollaries 2 and 3, albeit algebraically more involved. We start with the first half of the proposition. Because the maximum marginal benefit of \(m_1 \) on the investors’ total welfare is \(\frac{1 - c}{B} \), \(K_1(c, \cdot) \geq \frac{1 - c}{B} \) implies \(m_1^* \leq c \). Figure 1 implies when \(m_{2S} > m_1 - c \),
welfare is weakly decreasing in \(m_2 \). Thus \(m^*_2 = 0 \).

\[
\frac{\partial}{\partial m_1} \frac{\partial}{\partial \chi} Y(m_1; \chi) = \frac{d}{dm_1} \left[\max_{(m_2S)} \left[W_{2S} - (K(m_1, m_{2S}) - K(m_1, 0)) \right] \right] + \frac{B - m_1 - 1 + c}{2B} \max_{(m_{2F})} \left[W_{2F} - (K(m_1, m_{2F}) - K(m_1, 0)) \right] = \frac{1 - c}{2B} \frac{\partial}{\partial m_1} \left[\frac{B - m_1 - 1 + c}{2B} \max_{(m_2F)} \left[W_{2F} - (K(m_1, m_{2F}) - K(m_1, 0)) \right] \right] \geq 0.
\]

The second equality holds by the Envelope Theorem and by the fact that if \(m_{2F} \leq m_1 + 1 - c \), taking \(m_{2F} = 0 \) dominates, as seen in Figure 1. When \(K(\cdot, 1-c) - K(\cdot, 0) > \frac{c(1-c)}{B(1-c)} \), \(W_{2F}(m_2 = m_1 + 2\delta c) \leq K(m_1, M_1 + 1 - c) \), and thus \(m^*_{2F} = 0 \); when \(K(\cdot, 1-c) - K(\cdot, 0) > \frac{(1-c)^2}{2\delta - 1 + c} \), the last two terms on the RHS of the third equality are dominated by the first two terms as \(m^*_{2F} = 0 \). In either case, we have the whole expression being non-negative.

From \(1 - c - K(\cdot, 1-c) + K(\cdot, 0) - (2+B-c)K_2(\cdot, 1-c) > 0 \), we have \(K_2(\cdot, 1-c) < \frac{1-c}{B+2-c} \frac{2\delta}{2\delta - 1 + c}. \) The marginal benefit for increasing \(m_{2S} \) in \(W_{2S} \) exceeds the cost as long as \(m_{2S} < m_1 - c \); therefore \(m^*_{2S} = [m_1 - c]^+ \). When \(m_1 \leq c, m^*_{2S} = 0 \), the local derivative is the same as above, and thus is positive. When \(m_1 \geq c, m^*_{2S} = m_1 - c, m^*_{2F} = 0 \), the local derivative is

\[
\frac{\partial}{\partial m_1} \frac{\partial}{\partial \chi} Y(m_1; \chi) = -\frac{1-c}{2B} \left[K(m_1, m_{2S}) - K(m_1, 0) \right] - \frac{m_1 + B + 1 - c}{2B} \frac{\partial}{\partial m_1} \left[K(m_1, m_1 - c) - K(m_1, 0) \right] = \frac{1-c}{2B} \left[K(m_1, m_{2S}) - K(m_1, 0) \right] - \frac{m_1 + B + 1 - c}{2B} \left[K_2(m_1, m_1 - c) \right] = \frac{1-c}{2B} \left[K(m_1, m_{2S}) - K(m_1, 0) \right] - \frac{m_1 + B + 1 - c}{2B} \left[K_2(m_1, m_1 - c) \right] \geq \frac{1}{2B} \left[1 - c - K(m_1, 1 - c) + K(m_1, 0) - (2+B-c)K_2(m_1, 1-c) \right] \geq 0.
\]

The last two inequalities come from the fact that \(m_1 \leq 1 \) and the fact that \(1 - c - K(\cdot, 1-c) + K(\cdot, 0) - (2+B-c)K_2(\cdot, 1-c) > 0 \). Therefore, we have that \(Y \) has increasing differences in \((m_1, \chi)\).

To prove the second half of the theorem, note \(K_2(\cdot, 0) > \frac{1-c}{B+c-2} \frac{2\delta}{2\delta - (1+c)} \), and thus \(K(\cdot, 1-c) > \frac{1-c}{B+c-2} \frac{1-c}{1-c(1+2\delta)} \), and \(W_{2F} \) at \(m_2 = m_1 + 2\delta c \) is still less than \(K(m_1, m_1 + 1 - c) - K(m_1, 0) \). Consequently, \(m^*_{2F} = 0 \). \(K_2(\cdot, 0) > \frac{1-c}{B+c-2} \frac{2\delta}{2\delta - (1+c)} \) also implies \(\frac{1-c}{B+c-1-c(1+2\delta)} \leq K_2(m_1, m_1 - c) \).
which means \(m_{2S}^* < m_1 - c \).

\[
\frac{\partial}{\partial m_1} \frac{\partial}{\partial \lambda} Y(m_1; \lambda) = \frac{d}{dm_1} \left[\frac{B + m_1 + 1 - c}{2B} \max_{m_{2S}} [W_{2S} - (K(m_1, m_{2S}) - K(m_1, 0))] \right] + \frac{B - m_1 - 1 + c}{2B} \max_{m_{2F}} [W_{2F} - (K(m_1, m_{2F}) - K(m_1, 0))]
\]

\[
= \frac{\partial}{\partial m_1} \left[\frac{B - m_1 - 1 + c}{2B} \max_{m_{2F}} [W_{2S} - (K(m_1, m_{2S}) - K(m_1, 0))] \right]
\]

\[
= \frac{\partial}{\partial m_1} W_{2S}(m_{2S}^*) + \frac{B - m_1 - 1 + c}{2B} \frac{\partial}{\partial m_1} [K(m_1, m_{2S}^*) - K(m_1, 0)]
\]

\[
- \frac{1}{2B} (K(m_1, m_{2S}) - K(m_1, 0)) < 0.
\]

(27)

The first term is negative because \(m_{2S}^* < m_1 - c \). The second term is non-positive because \(K \) is weakly increasing in second argument. Finally, the third term is zero because \(K \) has zero cross-partial.

Finally, the above argument would not work if \(m_1^* \leq c \). But this scenario can be ruled out in that the minimum \(\frac{\partial Y}{\partial m_1} = \frac{1-c}{2B} \left[1 - \frac{c(1+2\delta)}{25 - c(1+2\delta)} \right] = \frac{1-c}{2B} \frac{\delta-c(1+2\delta)}{25-c(1+2\delta)} \). Notice we have used the fact that \(m_{2F}^* = 0 \). This is bigger than the marginal cost \(K_1(c; \cdot) \), and thus \(m_1^* > c \). Indeed, we have an interior \(m_{2S}^* \).

\[\square \]

A.10 Proof of Proposition 11

Proof. We prove the case under separable cost functions to focus on the information channel: \(K(m_1, m_2) = k(m_1) + k(m_2) \). Again, let \(L (L') \) be the total welfare net the intervention cost if the smaller (larger) fund is saved first.

First, consider the case in which \(m_1^* \leq c \) and \(m_1^* \leq c \). In this case,

\[
L = \max_{m_1^*} \frac{1-c}{2B} [(1 + B - c + m_1)(1 + \lambda) - c\delta] - k(m_1)
\]

\[
L' = \max_{m_1^*} \frac{1-c}{2B} \left[\left(1 + B - c + \frac{m_1^*}{\lambda} \right)(1 + \lambda) - c\lambda \delta \right] - k(m_1^*).
\]

Because \(\lambda > 1 \), obviously \(L > L' \).

Next, consider the case in which both \(m_1^* > c \) and \(m_1^* > c \):

\[
L = \max_{m_1^*} \frac{1-c}{2B} [(1 + B - c + m_1)(1 + \lambda) - c\delta] - k(m_1) - \frac{B + m_1 + 1 - c}{2B} k((m_1 - c) \lambda)
\]

\[
L' = \max_{m_1^*} \frac{1-c}{2B} \left[\left(1 + B - c + m_1^* \right)(1 + \lambda) - c\lambda \delta \right] - k(m_1^* - c) - \frac{B + m_1^* + 1 - c}{2B} k(m_1 \lambda - c).
\]
In this case, even if $m_1^* = \frac{m_1^*}{\lambda}$, $L|_{m_1^* = \frac{m_1^*}{\lambda}} - L'_{m_1^* = m_1^*}$ equals

$$L|_{m_1^* = \frac{m_1^*}{\lambda}} - L'_{m_1^* = m_1^*} = c\delta (\lambda - 1) + \left[k\left(m_1^*\right) - k\left(m_1^*/\lambda\right)\right] + \frac{B + m_1^*/\lambda + 1 - c}{2B} \left[k\left(m_1^*/\lambda - c\right) - k\left(m_1^*/\lambda\right)\right].$$

Because $k(\cdot)$ is convex,

$$L|_{m_1^* = \frac{m_1^*}{\lambda}} - L'_{m_1^* = m_1^*} > \left[k\left(m_1^*\right) - k\left(m_1^*/\lambda\right)\right] - \left[k\left(m_1^*/\lambda - c\right) - k\left(m_1^*/\lambda\right)\right].$$

Because $k(\cdot)$ is convex,

$$L|_{m_1^* = \frac{m_1^*}{\lambda}} - L'_{m_1^* = m_1^*} > \left[k\left(m_1^*\right) - k\left(m_1^*/\lambda\right)\right] - \left[k\left(m_1^*/\lambda - c\right) - k\left(m_1^*/\lambda\right)\right] > 0.$$

\[\square\]

B Full Analysis of Section 3.2.2

Does any equilibrium exists that agents choose to run irrespective of their signals? In other words, the threshold x_2^* that agents in period 2 adopt satisfies $x_2^* \leq \theta_1^* - \delta$. Such an equilibrium exists if and only if $m_2 < m_1 + 1 - c$. In this type of equilibrium, government intervention in the first period has a dominant effect on coordination among investors in the second period. Therefore, we name it the **Stage-Game Equilibrium with Dynamic Coordination**.

Lemma 8 describes this type of equilibrium. Because it is common knowledge that $\theta > \theta_1^*$, any equilibrium with $(\theta_2^*, x_2^*) = (\theta_1^* - \delta, \theta_1^* - \delta)$ is equivalent to $(\theta_2^*, x_2^*) = (-\infty, -\infty)$.

Lemma 8 (Stage-Game Equilibrium with Dynamic Coordination)

If $s_1 = F$, $(\theta_2^*, x_2^*) = (-\infty, -\infty)$ constitutes an equilibrium if and only if $m_2 < m_1 + 1 - c$.

Next, we turn to threshold equilibria with $\theta_2^* > \theta_1^*$ so that the fate of the fund in period 2 still has uncertainty. Similar to the analysis when $s_1 = S$, we consider two types of equilibria, depending on whether the marginal investor finds the public news useful.

Lemma 9 (Stage Game Equilibrium without Dynamic Coordination)

If $s_1 = F$ and $m_2 > m_1 + 2c\delta$, an equilibrium exists with thresholds

$$\begin{cases}
\theta_2^* = 1 + m_2 - c \\
x_2^* = 1 + m_2 - c + \delta (1 - 2c).
\end{cases}$$

(28)

Lemma 10 (Stage-Game Equilibrium with Partial Dynamic Coordination)

If $s_1 = F$ and $\min\{m_1 + 2c\delta, m_1 + 1 - c\} < m_2 < \max\{m_1 + 2c\delta, m_1 + 1 - c\}$, there exists an equilibrium with thresholds

$$\begin{cases}
\theta_2^* = 1 + m_2 - c - \frac{(1-c)(m_1+2c\delta-m_2)}{c(1+2\delta)-1} \\
x_2^* = 1 + m_2 - c + \delta (1 - 2c) - \frac{(1-c)(1+2\delta)(m_1+2c\delta-m_2)}{c(1+2\delta)-1}.
\end{cases}$$

(29)
Given any \((m_1, m_2)\) and \(s_1 = F\), Proposition 2 clearly follows Lemmas 8, 9 and 10.

C Full Analysis of Normally Distributed Signals

The equilibrium outcome in period 1 is characterized by two thresholds \((\theta_1^*, x_1^*)\) that satisfy

\[
A_1(\theta_1^*) + m_1 = \theta_1^* \\
Pr \left(\theta < \theta_1^* \mid x_1 = x_1^* \right) = c.
\]

where \(A_1(\theta_1^*) = Pr \left(x_1 < x_1^* \mid \theta = \theta_1^* \right)\) is the measure of investors who choose to roll over. Simple calculation shows that

\[
\theta_1^* = 1 + m_1 - c \\
x_1^* = 1 + m_1 - c - \delta \Phi^{-1}(c).
\]

The equilibrium in period 2 is again state-independent. We discuss the outcomes when \(s_1 = S\) and leave the case \(s_1 = F\) to the Appendix. When the intervention in the first period has succeeded, equilibrium in the second period will be either a stage-game equilibrium with full dynamic coordination (similar to Lemma 2), or one with partial dynamic coordination (similar to Lemma 4). The case without dynamic coordination vanishes as the support of the noise now spans between \((\infty, \infty)\). The first type of equilibrium is denoted as \((\theta_2^*, x_2^*) = (\infty, \infty)\) and any equilibrium with \((\theta_2^* > \theta_1^*, x_2^* = \infty)\) is equivalent. The necessary conditions that \((\theta_2^*, x_2^*) = (\infty, \infty)\) constitutes an equilibrium are

\[
Pr \left(1 + m_2 > \theta \mid \theta < \theta_1^* \right) = 1 \\
\Rightarrow m_2 > m_1 - c.
\]

Likewise, the necessary conditions that an equilibrium with partial dynamic coordination exists is that the solution \((\theta_2^*, x_2^*)\) to the equation system

\[
A_2(\theta_2^*) + m_2 = \theta_2^* \\
Pr \left(\theta < \theta_2^* \mid x_2, \theta < \theta_1^* \right) = c.
\]

exists and satisfies \(\theta_2^* < \theta_1^*\). Equivalently, we are looking for \(\theta_2^*\) that solves

\[
1 - (\theta_2^* - m_2) = c\Phi \left(\frac{\theta_1^* - \theta_2^* - \delta \Phi^{-1}(\theta_2^* - m_2)}{\delta} \right)
\]

We numerically solve equation (30).
Figures

Figure 1: W_{2S} and W_{2F} as a function of m_2

Parameters: $\delta = 0.8$, $c = 0.4$, $B = 3$, $m_1 = 0.8$.

Figure 2: W_{2S} and W_{2F} as a function of m_1

Parameters: $\delta = 0.8$, $c = 0.4$, $B = 3$, $m_2 = 0.2$.
Figure 3: $E[W_2]$ as a function of m_1

Parameters: $\delta = 0.8$, $c = 0.4$, $B = 3$, $m_2 = 0.2$.

Figure 4: $W_1 + W_2$ as a function of m_1 ($m_1 + m_2 = M > 2c\delta$)

Parameters: $\delta = 0.8$, $c = 0.4$, $B = 3$, $M = 0.74$.

A-15
Figure 5: $E[W_2]$ as a function of m_2

Figure 6: Endogenous initial intervention as a function of the extent to which the policy maker considers the subsequent intervention

Parameters: $\delta = 0.8$, $c = 0.4$, $B = 3$, $m_1 = 0.8$.

Parameters: $\delta = 1.2$, $c = 0.6$, $B = 3$, $k_1 = 0.5$, $k_2 = 0.5$, $K(m_1, m_2) = \frac{1}{2}k_1m_1^2 + \frac{1}{2}k_2m_2^2$.
Figure 7: Endogenous initial intervention as a function of the extent to which the policy maker considers the subsequent intervention
Parameters: $\delta = 2$, $c = 0.25$, $B = 3$, $k_1 = 0.2$, $k_2 = 0.8$, $K(m_1, m_2) = \frac{1}{2}k_1m_1^2 + \frac{1}{2}k_2m_2^2$.

Figure 8: Endogenous initial intervention as a function of the extent to which the policy maker considers the subsequent intervention
Parameters: $\delta = 1.2$, $c = 0.6$, $B = 3$, $k_1 = 0.5$, $k_2 = 0.01$, $K(m_1, m_2) = \frac{1}{2}k_1m_1^2 + \frac{1}{2}k_2m_2^2$.