Decentralized Mining in Centralized Pools

Lin William Cong† Zhiguo He† Jiasun Li§

Abstract

An open blockchain’s well-functioning relies on adequate decentralization, yet the rise of mining pools that provide risk-sharing leads to centralization, calling into question the viability of such systems. We show that mining pools as a financial innovation significantly exacerbates the arms race and thus energy consumption for proof-of-work-based blockchains. Moreover, cross-pool diversification and endogenous pool fees generally sustain decentralization — dominant pools better internalize the mining externality, charge higher fees, attract disproportionately less miners, and thus grows more slowly. Consequently, aggregate growth in mining pools is not accompanied by over-concentration of pools. Empirical evidence from Bitcoin mining supports our model predictions, and the economic insight applies to many other blockchain protocols.

JEL Classification: D47, D82, D83, G14, G23, G28

Keywords: Arms Race,Bitcoin, Blockchain, Cryptocurrency, Financial Innovation, FinTech, Mining Pools, Risk-Sharing.
1 Introduction

Digital transactions traditionally rely on a central record-keeper, who is trusted to behave honestly and be sophisticated enough to defend against cyber-vulnerabilities. Blockchains instead decentralize record-keeping, with the best-known application being the P2P payment system Bitcoin (Nakamoto (2008)). A majority of extant blockchains rely on variants of the proof-of-work (PoW) protocol, often known as “mining,” in which independent computers (“miners”) dispersed all over the world spend resources and compete repeatedly for the right to record new blocks of transactions, and the winner in each round gets rewarded with native crypto-tokens. Miners have incentives to honestly record transactions because their rewards are only valid if their records are endorsed by subsequent miners.

Compared to a centralized system, blockchains have advantages such as robustness to cyber-attacks and avoidance of “single point of failure.” However, these benefits are predicated on adequate decentralization, which is only a technological possibility, not a guaranteed economic reality. Moreover, as we highlight later in the paper, the rise of mining pools drastically aggravates the arms race PoW protocols create, leading to the egregious energy consumption that has caught many practitioners and researchers’ attention.

Whereas Nakamoto (2008) envisions a perfect competition among independent computer nodes across the world, many cryptocurrencies witness the rise of “pooled mining” wherein miners partner together and share mining rewards, as opposed to “solo mining” wherein each miner bears all her own mining risks. From an economic perspective, forming pools is natural, because partnerships/cooperatives offer the most common organization forms in humans history in achieving risk sharing among individual agents (e.g., the insurance industry). As such, over time some pools gain significant share of global hash rates (a measure of computation power).

Figure 1 illustrates the evolution of the distribution of hash rates among Bitcoin mining nodes across the world, many cryptocurrencies witness the rise of “pooled mining” wherein miners partner together and share mining rewards, as opposed to “solo mining” wherein each miner bears all her own mining risks. From an economic perspective, forming pools is natural, because partnerships/cooperatives offer the most common organization forms in humans history in achieving risk sharing among individual agents (e.g., the insurance industry). As such, over time some pools gain significant share of global hash rates (a measure of computation power).

1 Many retailers already accept Bitcoins (Economist (2017b)). Applications beyond payment systems include the Ethereum platform that enables decentralized smart contract execution. Nanda, White, and Tuzikov. (2017) and Weiss and Corsi (2017) provide a concise introduction to blockchains and applications.

2 Other protocols for decentralized consensus include Proof-of-Stake (PoS), Practical Byzantine Fault Tolerance (PBFT), etc. Saleh (2017) discusses the sustainability of PoS, among others. We extend our discussion to PoS in Section 5.3.

3 Recent cyber scandals at Equifax offers a vivid lesson. See, e.g., Economist (2017a). Blockchains are also presumably less vulnerable to misbehaviors and monopoly powers as it shifts the trust on the stewardship of a central book-keeper to the selfish economic incentives of a large number of competitive miners.

4 For example, the mining pool GHash.io briefly reached more than 51% of global hash rates in July, 2014.
Figure 1: The evolution of size percentages of Bitcoin mining pools

This graph plots (1) the growth of aggregate hash rates (right hand side vertical axis, in log scale) starting from June 2011 to today; and (2) the size evolutions of all Bitcoin mining pools (left hand side vertical axis) over this period, with pool size measured as each pool’s hash rates as a fraction of global hash rates. Different colors indicate different pools, and white spaces indicate solo mining. Over time, Bitcoin mining has been increasingly dominated by mining pools, but no pool seems ever to dominate the mining industry. The pool hash rates information comes from Bitcoinitly and BTC.com). For more details, see Section 4.

Mining pools have been gradually encroaching, constituting only 5% of the global hash rates in June 2011 but almost 100% since late 2015. This phenomenon suggests natural economic forces toward centralization within a supposedly decentralized system, and the associated risk-diversification benefit grows together with global hash rates (plotted in red line, in log scale). While the rise of mining pools, together with other relevant centralizing forces, lead to concerns over whether a blockchain system can stay decentralized and thus sustain in the long run, none of the large pools that emerge at times has snowballed to dominance for prolonged periods of time. Instead, pool sizes seem to exhibit a mean reverting tendency, hinting at concurrent economic forces suppressing over-centralization.

We argue that mining pools, as a financial innovation that provides better risk-sharing, significantly exacerbate the arms race and thus the energy consumption associated with proof-of-work-based blockchains. The social waste in the aggravated arms race constitutes a serious concern. In contrast, we find that the winner-pool-take-all concern is somewhat misguided because cross-pool diversification and endogenous pool fees can sustain decentral-
ization under general blockchain consensus protocols. These insights are not only informative to the blockchain community, but also fundamental to our understanding of industrial organization and the trade-offs in decentralized versus centralized systems (e.g., Hayek (1945)).

Specifically, we model the decision-making of miners in acquiring hash rates and allocating them into mining pools, together with the competition of pool managers who set fees for their risk-diversification services. We emphasize two particularly relevant characteristics of cryptocurrency mining. First, profit-driven miners face little transaction cost to participate in multiple mining pools, because switching between pools involves simply changing one parameter in the mining script. This contrasts with the literature of labor and human capital in which each economic agent typically only holds one job. Second, as explained shortly, the production function of the mining industry represents an arms race, featuring a negative externality that each individual’s acquiring more computation power directly hurts others’ payoff. These two institutional features are key to understanding our results.

We first demonstrate the significant risk-diversification benefit offered by mining pools for individual miners. Given standard risk-aversion and realistic mining-technology parameters, we find that the risk-sharing benefit of joining a pool is quantitatively significant: the certainty equivalent of joining a pool more than doubles that from solo mining.

While this finding may lead to a hasty conclusion that a large pool would get ever larger, we demonstrate that the risk-sharing benefit within a large pool could be alternatively obtained through miner diversification across multiple small pools. This is reminiscent of the Modigliani-Miller insight: Although investors are risk-averse, firms should not form conglomerate for risk diversification purpose, simply because investors can diversify by themselves in the financial market (by holding a diversified portfolio). Formally, in a frictionless benchmark with risk averse agents, full risk-sharing obtains but the pool size distribution is irrelevant.

Yet risk-sharing has a dark side, from a normative perspective. Although mining pools provides great value for individual miners, it exacerbates the mining arms race. The global hash rates, under this full-risk-sharing benchmark, is significantly higher than that under solo mining. To the extent that the energy waste outweighs the enhanced security associated with blockchain systems, the rise of mining pools drastically reduces social welfare.

Given the benchmark outcome, we then introduce an empirically relevant friction: some “passive miners” (those inattentive ones) do not optimally adjust their hash rate allocation in real time. Doing so allows us to better understand the industrial organization of mining
pools and the exacerbation of the mining arms race observed in practice.

We fully characterize the equilibrium in this static setting, and find that the initial pool size distribution matters for welfare and future evolution of the industry. A large incumbent pool optimally charges a high fee which slows its percentage growth relative to smaller pools. In other words, if our model were dynamic, pool sizes mean-revert endogenously.

The central force behind this result is the arms race effect highlighted earlier: larger pools have a larger impact on the global hash power. In traditional industrial organization models, a bigger oligopolistic firm essentially charge higher prices and produces less. A similar effects manifests in our setting: larger pools charge higher fees to have proportionally less active mining, attracting less global hash power. Consequently, absent other considerations, we should expect an oligopoly market structure of the global mining industry to sustain in the long run, and no single pool grows too large to monopolize mining.

In sharp contrast to the standard imperfect competition, “production” in the PoW framework takes the form of active miners using computation power to engage in arms race against others, and hence a potential social waste. Larger pools are able to internalize this negative externality better. In this sense, pool centralization can help reduce aggregate inefficient investment in computation power.

Nevertheless, the absence of dominant pools over time implies that mining pools internalize their mining externality less than they encourage individuals to acquire more hash power. Consequently, the rise of mining pools as a financial innovation for individual risk-diversification still contributes significantly to the excessive mining arms race and energy consumption. Under reasonable parameters, the global hash rates can be about ten times of that under solo mining.

Empirical evidence from Bitcoin mining supports our theoretical predictions. First of all, though we do not claim causality, the rise of mining pools indeed coincides with the explosion of global hash rates and energy consumption on mining. Second, we provide cross-section evidence on pool size, pool fees, and pool growth. Every quarter, we sort pools into deciles based on the start-of-quarter pool size, and calculate the average pool share, average fee, and average log growth rate for each decile. We show that pools with larger start-of-quarter size charge higher fees, and grow slower in percentage terms. We investigate these relationship in three two-years spans (i.e., 2012-2013, 2014-2015, and 2016-2017), and find almost of them are statistically significant with the signs predicted by our theory.
We further discuss the survival of market powers for pool managers with passive hash rates even with free entry, robustness of our results to aggregate risk modeling, and how the insights on risk-sharing and competition apply to alternative proof-of-work- or proof-of-stake-based blockchain protocols. We also discuss how other external forces also counteract over-concentration of pools and could be added to our framework. Appendix C contains the analysis of short-term outcomes when the miners’ hash rates are fixed.

More generally, our theory offers two novel economic insights: First, even though risk-sharing considerations leads to the formation of firms and conglomerates, it is not necessarily accompanied by over-centralization or concentration of market power. Second, what we really should worry about is that when agents or firms are engaged in an arms race with one’s productions exerting negative externalities on others as seen in the cryptocurrency mining industry, a financial innovation or vehicle (mining pools that benefit individuals through risk-sharing) can be detrimental to welfare because it aggravates the arms race (excessive aggregate investment in hash power which can be socially wasteful), reminiscent of Hirshleifer (1971) and more recently Mian and Sufi (2015).

Related literature. Our paper contributes to emerging studies on blockchains and distributed ledger systems. Harvey (2016) briefly surveys the mechanics and applications of crypto-finance. Cong and He (2018) examine informational tradeoffs in decentralized consensus generation and how they affect business competition. Easley, O’Hara, and Basu (2017) and Huberman, Leshno, and Moallemi (2017) analyze the rise of transaction fees and the Bitcoin blockchain design. Several papers study the impact of blockchains on corporate governance (Yermack, 2017), holding transparency in marketplaces (Malinova and Park, 2016), financial settlements (Khapko and Zoican, 2017), and financial reporting and auditing (Cao, Cong, and Yang, 2018). Also related are studies on initial coin offerings for project launch (Li and Mann, 2018), as well as cryptocurrency valuation and the roles of tokens on platform adoption (Cong, Li, and Wang, 2018).

a Cournot-type competition and argues that the dynamic difficulty-adjustment mechanism reduces monopoly power.

An adequate level of decentralization is crucial for the security of a blockchain. Nakamoto (2008) explicitly requires that no single party shall control more than half of global computing power for Bitcoin to be well-functioning (thus the concept of 51% attack).\(^5\) Eyal and Sirer (2014) study “selfish mining” in Bitcoin blockchain in which miners launch block-withholding attacks even with less than half of the global hash rates.\(^6\) Large miners may also be vulnerable to block-withholding attacks against one another, known as miner’s dilemma (Eyal (2015)). These papers follow the convention in the computer science literature to only consider one strategic pool behaving as a single decision maker.\(^7\) In contrast, we characterize the full equilibrium wherein both miners and pools are strategic, in addition to modeling the incentives of participants and managers within each pool.

All the papers above on mining games only consider risk-neutral miners and take any mining pools as exogenously given singletons, while we emphasize risk-aversion — the rationale behind the emergency of mining pools in the first place. Our findings on the creation and distribution of mining pools also connect with strands of literature on contracting and the theory of the firm.\(^8\) A few papers study contract design in mining pools, typically with one single pool (Rosenfeld, 2011; Schrijvers, Bonneau, Boneh, and Roughgarden, 2016; Fisch, Pass, and Shelat, 2017). We focus on the contracting relationships among miners and pool managers and the interaction of multiple pools in an industrial organization framework.

The rest of the paper proceeds as follows. Section 2 introduces the institutional details of Bitcoin mining and stylized facts about mining pools. Section 3 sets up the model and characterizes the equilibrium, before Section 4 provides corroborating empirical evidence using Bitcoin data. Section 5 discusses model implications and extensions such as pool entry and alternative consensus protocols. Section 6 concludes.

\(^5\)Empirically, Gencer, Basu, Eyal, van Renesse, and Sirer (2018) investigate the extent of decentralization by measuring the network resources of nodes and the interconnection among them. Also related is Budish (2018), which suggests intrinsic economic limits to how economically important Bitcoin can become before being subjected to majority attacks.

\(^6\)Sapirshtein, Sompolinsky, and Zohar (2015) develop an algorithm to find optimal selfish mining strategies. Nayak, Kumar, Miller, and Shi (2016) (stubborn mining) goes beyond the specific deviation in Eyal and Sirer (2014) and consider a richer set of possible deviating strategies. They conclude that there is no one-size-fits-all optimal strategy for a strategic miner.

\(^7\)Beccuti, Jaag, et al. (2017) is an exception focusing on how miner number and heterogeneity affect block-withholding.

\(^8\)Classical studies include Wilson (1968) on syndicates and Stiglitz (1974) on sharecropping. Recent studies include Li (2015) and Li (2017) on private information coordination.
2 Mining Pools: Background and Principle

This section provides background knowledge of the Bitcoin mining process, analyzes the risk-sharing benefit of mining pools, and introduces typical pool fee contracts.

2.1 Mining and Risky Reward

Bitcoin mining is a process in which miners around the world compete for the right to record a brief history (known as block) of bitcoin transactions. The winner of the competition is rewarded with a fixed number of bitcoins (currently 12.5 bitcoins, or \(12.5B\)), plus any transactions fees included in the transactions within the block.\(^9\) In order to win the competition, miners have to find a piece of data (known as solution), so that the hash (a one-way function) of the solution and all other information about the block (e.g. transaction details within the block and the miner’s own bitcoin address) has an adequate number of leading zeros. The minimal required number of leading zeros determines the mining difficulty.

Under existing cryptography knowledge, the solution can only be found by brute force (enumeration). Once a miner wins the right to record the most recent history of bitcoin transactions, the current round of competition ends and a new one begins.

Technology rules that the probability of finding a solution is not affected by the number of trials attempted. This well-known memoryless property implies that the event of finding a solution is captured by a Poisson process with the arrival rate proportional to a miner’s share of hash rates globally. Specifically, given a unit hash cost \(c\) and a dollar award \(R\) for each block, the payoff to the miner who has a hash rate of \(\lambda_A\) operating over a period \(T\) is

\[
X_{solo} - c\lambda_A T, \quad \text{where } X_{solo} = \bar{B}_{solo}R \text{ with } \bar{B}_{solo} \sim \text{Poisson}\left(\frac{1}{D} \frac{\lambda_A}{\Lambda} T\right).
\]

(1)

Here, \(\bar{B}_{solo}\) is number of blocks the miner finds within \(T\) — a Poisson distributed random variable captures the risk that a miner faces in this mining game. \(\Lambda\) denotes global hash rate (i.e., the sum of hash rates employed by all miners, whether individual or pool), \(D = 60 \times 10\) is a constant so that on average one block is created every 10 minutes.

Note that this dynamic adjustment to the mining difficulty over time depends on the global hash power devoted to mining (an individual’s success rate is scaled by the global

\(^9\)See Easley, O’Hara, and Basu (2017) and Huberman, Leshno, and Moallemi (2017) for more details.
hash rates \(\Lambda \) in Eq.(1)), and constitutes the driving force for the mining arms race.

The hash cost \(c \) is closely related to the energy used by computers to find the mining solution. As of April 2018, aggregate energy devoted to Bitcoin mining alone exceeds 60 TWh, roughly the annual energy consumed by Switzerland as a country (Lee, 2018).

Because mining is highly risky, miners have strong incentives to find ways to reduce risk.\(^{10}\) While theoretically there are various ways to reduce risk, a common practice is to have miners mutually insure each other by creating a (proportional) mining pool. The next section describes how such a mining pool works.

2.2 Mining Pool and Risk Sharing

A mining pool combines the hash rates of multiple miners to solve one single cryptographic puzzle, and distributes the pool’s mining rewards back to participating miners in proportion to their hash rate contributions.\(^ {11}\) Ignore fees that represent transfers among pool members for now. Then, following the previous example, the payoff to one participating miner with hash rate \(\lambda_A \) who joins a pool with existing hash rate \(\Lambda_B \) is

\[
X_{\text{pool}} - c\lambda_AT, \text{ where } X_{\text{pool}} = \frac{\lambda_A}{\lambda_A + \Lambda_B} \tilde{B}_{\text{pool}}R \text{ with } \tilde{B}_{\text{pool}} \sim \text{Poisson} \left(\frac{\lambda_A + \Lambda_B}{\Lambda} \frac{T}{D} \right). \tag{2}
\]

For illustration, consider the symmetric case with \(\lambda_A = \lambda_B \). Relative to solo mining, a miner who conducts pooled mining is twice likely to receive mining payouts but half the rewards at each payment. This is just the standard risk diversification benefit. We have the following proposition.

Proposition 1. \(X_{\text{pool}} \) second-order stochastically dominates \(X_{\text{solo}} \), so any risk-averse miner strictly prefers \(X_{\text{pool}} \) over \(X_{\text{solo}} \).

Hence pooled mining provides a more stable cashflow and reduces the risk a miner faces.

\(^{10}\) Bitcoin mining is in some sense analogous to gold mining. Just like a gold miner who spends manpower and energy to dig the ground in search of gold, a Bitcoin miner spends computing powers (known as hash rates) and related electricity/cooling/network expenses in search of solutions to some difficult cryptography puzzles; just like a gold miner who only gets paid when he successfully finds the gold, a bitcoin miner only gets paid when he finds a solution. More importantly, like gold mining, bitcoin mining is risky – a miner could continuously expend resources mining for a prolonged period without finding a solution and hence remain unpaid.

\(^{11}\) Note that because the space of candidate partial solutions is astronomical that it makes negligible difference to each participating miner’s payoff whether the pool coordinates their mining efforts or simply randomize the assignment of partial problems.
2.3 Quantifying Risk-Sharing Benefits of Pooled Mining

The risk-sharing benefit of joining a mining pool can be substantial. To assess the magnitude, we calculate the difference of certainty equivalents of solo mining and pooled mining for a typical miner. Throughout the paper we use preference with Constant-Absolute-Risk-Aversion, i.e., exponential utility:

\[
u(x) \equiv \frac{1}{\rho} \left(1 - e^{-\rho x}\right)
\] (3)

The resulting magnitude is be more or less robust to this utility specification, as we calibrate the risk-aversion parameter \(\rho\) based on the widely-accepted magnitude of the Relative Risk-Aversion coefficient.

The certainty equivalent of the revenue from solo mining, \(CE_{solo}\), can be computed as

\[
CE_{solo} \equiv u^{-1}(\mathbb{E}[u(\tilde{X}_{solo})]) = \frac{\lambda_A}{\Lambda} \frac{1}{\rho} \left(1 - e^{-\rho R}\right) \frac{T}{D}.
\] (4)

Similarly, the certainty equivalent of the revenue from joining a mining pool, \(CE_{pool}\), is

\[
CE_{pool}(\lambda_B) \equiv u^{-1}(\mathbb{E}[u(\tilde{X}_{pool})]) = \frac{(\lambda_A + \Lambda_B)}{\Lambda} \frac{1}{\rho} \left(1 - e^{-\rho R\lambda_A + \lambda_B}\right) \frac{T}{D}.
\] (5)

We highlight that this certainty equivalent depends on the pool size \(\lambda_B\) and typically a larger pool offers greater risk diversification benefit.

We choose some reasonable numbers to gauge the magnitude of risk-sharing benefit of joining the pool. Suppose \(\lambda_A = 13.5\)(TH/s), which is what one Bitmain Antminer S9 ASIC miner (a commonly used chip in the bitcoin mining industry) can offer; \(\Lambda_B = 3,000,000\)(TH/s), which is at the scale of one large mining pool; \(R = $100,000\) ($12.5 reward + $0.5 transaction fees per block and $8000 per BTC gives $104,000); \(\Lambda = 21,000,000\)(TH/s), which is the prevailing rate; and \(\rho = .00002\) (assuming a CRRA risk aversion of 2 and a wealth of $100,000 per miner gives a corresponding CARA risk aversion of 0.00002). Take \(T = 3600 \times 24\) which is one day. Then \(CE_{solo} = 4.00216\) and \(CE_{pool} = 9.25710\), which implies a difference of 5.25494, about 57% of the expected reward \(\mathbb{E}(\tilde{X}_{solo})\) (about 9.25714) In other words, for a small miner, joining a large pool almost boost his risk-adjusted payoff by more than 131%.\(^{12}\) Equally relevant, for more risk-averse miners

\(^{12}\)Even if we set \(\rho = .00001\) which implies a miner with CRRA risk aversion of 2 and is twice richer,
(e.g. \(\rho = .00004 \)), given the current mining cost parameters, joining a pool could turn a (certainty equivalent) loss into profit.\(^{13}\)

This quantitatively significant risk-diversification benefit has two main implications. First, individual active miners who significantly benefit from the risk-diversification acquire hash rates more aggressively to engage in the mining arms race; this potentially explains to the first order the large egregious energy consumption associated with cryptocurrency mining. Second, mining pools can potentially charge fees to newly joined miners; and these fees (price) determine the individual miners’ optimal hash rates allocation (quantity). The equilibrium fees, which should be lower than the monopolist fees calculated above due to competition among mining pools, depend on the industrial organization of mining pools.

Before we develop a model to study these questions, we describe the various forms of fee contracts that in practice individual miners accept when joining a mining pool.

2.4 Fee Contracts in Mining Pools

Pools in practice offer fee structures to its participating miners that could be categorized into three classes: *Proportional*, *Pay per Share* (PPS), and *Cloud Mining*. Table 3 gives the full list of contracts currently used by major pools, with Appendix B offering a full description of different reward types.

We next discuss these classes of compensation fee structure based on the contracting variables and the mapping from the contracting variables to payoffs. Technical details are left out unless they are necessary for understanding the unique feature of contracting in mining pools.

Pool managers and mining reward. A mining pool is often maintained by a pool manager, who takes a cut from miners’ rewards at payout, known as pool fees which differ across pool contracts. In practice, all miners are subject to the same pool fee when contributing

\(^{13}\)Assuming a $0.12 per kWh electricity cost, and 1375w/h for S9 (see here), the power consumption is \(c = 1.375 \times 0.12 / (3600 \times 13.5) \) per TH (or \(c = 3.96 / (3600 \times 24 \times 13.5) \) per TH with $3.96 daily power cost).

Then \(\frac{1}{D \rho} \frac{\lambda_A + \lambda_B}{A} \left(1 - e^{-\rho R A} \right) - \lambda_A C = 6.1 \times 10^{-5}/s \) or $5.3/day, while \(\frac{1}{D \rho} \frac{\lambda_A}{A} \left(1 - e^{-\rho R} \right) - \lambda_A C = -2.0 \times 10^{-5}/s \) or $1.7/day.
to the same pool under the same contract, independent of the level of their hash rates contributed to the pool. In other words, there is no observed price discrimination in terms of the pool fee charged.

Furthermore, different pools also vary in how they distribute transaction fees in a block. These transaction fees are different from “compensation/fees” that our model is analyzing; as discussed in Section 2.1, the transaction fees are what bitcoin users pay for including their transactions currently in mempool (but not on the chain yet) into the newly mined block. While most pools keep transaction fees and only distribute the coin reward from newly created block, given the rise of transaction fees recently more pools now also share transactions fees. Our reduced form block reward R encompasses both types of reward.

Effectively observable hash rates. All classes of fee contracts effectively use a miner’s hash rate as contracting variable. Although in theory a miner’s hash rate is unobservable to a remote mining pool, computer scientists have designed ways to approximate it with high precision by counting the so-called *partial solutions*. A partial solution to the cryptographic puzzle, like solution itself, is a piece of data such that the hash of all information about the block has at least an adequate number of leading zeros that is smaller than the one required by full solution. A solution, which can be viewed as “the successful trial,” is hence always a partial solution. Counting the number of partial solutions amounts to measuring the hash rates. Different observed contracts may use and weigh different partial solutions that represent different approximation methods, which are all proven to be quite accurate.

Crucially, the approximation error between the measured hash rate and the true hash rate can be set to be arbitrarily small with little cost. For economists, if one interpret “mining” as “exerting effort,” then an important implication is that the principal (pool manager) can measure the actual hash rate (miner’s effort) in an arbitrarily accurate way, rendering moral hazard issues irrelevant. We All team members’ effort inputs are perfectly observable and contractible, and the only relevant economic force is risk diversification – a situation in stark contrast to that in Holmström (1982).

Fee contracts. As mentioned, the more than 10 types of fee contracts fall into three classes: proportional, pay per share (PPS), and cloud mining. These contracts differ in how they map each miner’s hash rates to his final reward.
One predominant class entails proportional-fee contracts. Under this contract, each pool participant only gets paid when the pool finds a solution. The pool manager charges a fraction f of the block reward R, and then distributes the remaining reward $(1 - f)R$ in proportion to each miner’s number of partial solutions found (and hence proportional to their actual hash rates). More specifically, the payoff of any miner with hashrate λ_A joining a pool with an existing hashrate λ_B and a proportional fee f is

$$\frac{\lambda_A}{\lambda_A + \Lambda_B} (1 - f) \hat{B} R - c\lambda_A T, \text{ with } \hat{B} \sim \text{Poisson} \left(\frac{\lambda_A + \Lambda_B}{\Lambda} \right) \frac{T}{D}$$ \hspace{1cm} (6)$$

Another popular class entails pay-per-share (PPS) contracts: each pool participant gets paid a fixed amount immediately after finding a partial solution (again, in proportional to the hash rate). Hence the PPS contract corresponds to “hourly-based wages;” or, all participating miners renting their hash rates to the pool. Following the previous example, given a PPS fee f_{PPS}, the participating miner’s payoff is simply $r \cdot \lambda_A$ with

$$r = \frac{RT}{D\lambda} (1 - f_{PPS})$$ \hspace{1cm} (7)$$

being the rental rate while giving up all the random block reward. As shown, in practice the PPS fee is quoted as a fraction of the expected reward per unit of hash rate (which equals $\frac{RT}{\lambda T}$). Cloud mining, which essentially says miners rent hash rates from the pool, does exactly the opposite: a miner pays a fixed amount upfront to acquire some hash rate from the pool, and then gets paid as if conducting solo mining.

Our theory focuses on proportional fees only, though the economic force can be easily adapted to the case of hybrid of proportional and PPS fees. There are two reasons for this modeling choice. First, in practice, about 70% of pools are adopting proportional fees, and 28% pools are using proportional fees exclusively.

The second reason is more conceptually important. Notice that the pure form of PPS or cloud mining is about risk allocation between miners and pool manager. Under our framework with homogeneous risk aversion among miners and pool managers, there is no welfare gains by adopting PPS or cloud mining. In contrast, a proportional fee contract embeds the key risk sharing benefit into the contract.

\[14\] In practice, the most salient proportional contract is the variant Pay-Per-Last-N-Shares (PPLNS), which instead of looking at the number of shares in a given round, looks at the last N shares regardless of round boundaries.
Table 1: Evolution of Pool Sizes and Fees

This table summarizes the evolution of mining pool sizes and fees from 2011 to 2017. We report total hash rates in Column A, total number of mining pools in Column B, and in Column C the fraction of hashrates contributed by top-5 pools (i.e., sum of the top five pools hash-rate over the market total hashrate, including those from solo-miners). In Column D, we report the average fee weighted by hashrates charged by mining pools. In Column E, we report the fraction of mining pools that use proportional fees; the fraction is calculated as the number of pools that use proportional fees divided by the number of pools with non-missing information on fee contracts. Column F and G give the simple averages of proportional fees and average total fees charged by top-5 pools, respectively; and Column H and Column I are simple averages across all pools. The pool hashrates information comes from Bitcoinity and BTC.com. The fee contract information is obtained from Bitcoin Wiki. All fee and size data are downloaded in Feb 2018 and converted into quarterly averages. Reward types are determined at the end of each quarter. Over time more hash rates are devoted to Bitcoin mining, and a majority of mining pools offer proportional contracts. The largest five pools on average charge higher fees.

<table>
<thead>
<tr>
<th>Year</th>
<th>Hashrate (PH/s)</th>
<th># of Pools</th>
<th>Top 5 (%)</th>
<th>Avg. Fee (Size-Weighted)</th>
<th># Frac. Of Prop. Pools</th>
<th>Fee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A)</td>
<td>(B)</td>
<td>(C)</td>
<td>(D)</td>
<td>(E)</td>
<td>(F)</td>
</tr>
<tr>
<td>2011</td>
<td>0.01</td>
<td>8</td>
<td>7.63</td>
<td>0.57</td>
<td>87.12</td>
<td>0.28</td>
</tr>
<tr>
<td>2012</td>
<td>0.02</td>
<td>15</td>
<td>34.66</td>
<td>2.71</td>
<td>61.25</td>
<td>0.66</td>
</tr>
<tr>
<td>2013</td>
<td>1.48</td>
<td>23</td>
<td>71.01</td>
<td>2.73</td>
<td>62.57</td>
<td>1.58</td>
</tr>
<tr>
<td>2014</td>
<td>140.78</td>
<td>33</td>
<td>70.39</td>
<td>0.88</td>
<td>70.50</td>
<td>1.33</td>
</tr>
<tr>
<td>2015</td>
<td>403.61</td>
<td>43</td>
<td>69.67</td>
<td>1.51</td>
<td>77.92</td>
<td>1.10</td>
</tr>
<tr>
<td>2016</td>
<td>1,523.83</td>
<td>36</td>
<td>75.09</td>
<td>2.50</td>
<td>77.14</td>
<td>1.48</td>
</tr>
<tr>
<td>2017</td>
<td>6,374.34</td>
<td>43</td>
<td>62.25</td>
<td>1.67</td>
<td>78.89</td>
<td>2.00</td>
</tr>
</tbody>
</table>

2.5 Stylized Facts about Mining Pools

Table 1 serves as a summary of the institutional background of the mining pool industry. The total hash rates in bitcoin mining (Column A), the number of identified mining pools (Column B), as well as the concentration of mining pools (Column C, measured by C5 which is the total market size of the top-5 pools sorted by hash rates) have mostly been increasing since 2011. As a gauge of overall cost in joining mining pools, Column D gives the average pool fee (including proportional, PPS, and others) weighted by hash rates for each year. Column E gives the fraction of hash rates in the mining pools that are using proportional fees; following a peak of 87% in 2011, this this fraction has been mostly increasing in recent years, with about 79% in 2017.

The rest of four columns focus on the evolution and magnitude of pool fees. Column F and G are for top-5 pools while Column H and I for all pools. Overall, the fee falls in the
range of a couple of percentage points; and the proportional fees are in general smaller than “average fee” which is the average of proportional fees, PPS fees, and others.\(^{15}\)

Last but not least, the stylized fact revealed by comparing “Top 5” and “All” is that fees charged by top 5 pools are higher than the average fees charged by pools with all sizes. This is one salient empirical pattern that motivates our paper.

3 An Equilibrium Model of Mining Pools

We present an equilibrium model where multiple pool managers compete in fees to attract customer miners. We first give a benchmark result: in a frictionless environment where all miners can actively determine their hash-rate acquisition and allocations to different pools, risk-sharing itself does not lead to centralization simply because miners can diversify themselves across pools. However, risk-sharing leads to a dramatic increase in global hash rate and thus a significantly more aggressive arms race.

Pool size distribution starts to matter in an interesting way when we assume that larger pools also have more passive miners who do not adjust their allocations. We show that larger pools charge higher fees, leading to slower pool growth. We then confirm key theoretical predictions using data on Bitcoin mining pools.

More importantly, no matter how the distribution of pool size evolves, mining pools as a form of financial innovation for risk sharing multiples the global hash power devoted to mining by several orders of magnitudes. To the extent that the blockchain consensus security does not improve linearly in the global hash power once it is above a certain threshold (which it does not in the case of the Bitcoin blockchain), this represents a tremendous waste of energy and detriment to the environment and social welfare.

3.1 Setting

We study a static model with all agents, both pool managers and individual miners, having the same CARA utility function given in Eq.(3) and using proportional-fee contracts.\(^{15}\)

\(^{15}\)Take PPS fees as an example. As explained, PPS contracts offer zero risk exposure to participating miners, and therefore the miners using PPS contracts are happy to pay a higher fee than using proportional contracts (or equivalently, pool managers charge more from miners for bearing more risk).
Pool Managers There are M mining pools controlled by different managers; we take these incumbent pools as given and study potential entry later in Section 5.1. Pool $m \in \{1, \cdots, M\}$ has Λ_{pm} (p stands for passive mining) existing hash rates from passive miners who stick to these pools. Empirically, we link Λ_{pm} to the pool size, under the assumption that a fixed fraction of miners do not adjust the hash rate contribution across pools. Passive hash rates include those from miners who do not pay attention to changes in pool sizes or fees at all times, the pool manager who commits to her own pool, or miners who derive special utility from a particular pool (e.g. strategic investors supporting the pool manager).\(^{16}\)

Thanks to the significant risk sharing benefit to individual miners explained in Section 2, managers of pools $\{m\}_{m=1}^M$ post (proportional) fees $\{f_m\}_{m=1}^M$ simultaneously to maximize profits, where the fee vector $\{f_m\}_{m=1}^M$ is determined in equilibrium.

Active miners’ problem There is a continuum of active homogeneous miners of total measure N, each of whom can acquire hash power with a constant unit cost c. In other words, active miners are competitive while mining pools may enjoy market power. In Appendix C, we discuss the case where active miners are endowed with fixed hash rates, and show our conclusions concerning the industrial organization of mining pools remain robust.

Taking the fee vector $\{f_m\}_{m=1}^M$ as given, these active miners can acquire and allocate their hash rates to the above m pools. Optimal allocation among existing pools, rather than a binary decision of participation, plays a key role in our analysis. Here, we also implicitly assume that these infinitesimal active miners lack the expertise to become the pool managers (they are just customers of mining pools). This is consistent with the fact that most individual miners simply use mining softwares and setting up a mining pool is an elaborate process; or they lack the commitment device of locking their hash rates.

Consider an active miner who faces $\{\Lambda_{pm}\}_{m=1}^M$ and $\{f_m\}_{m=1}^M$. The payout when allocating a hash rate of λ_m to pool m is

$$X_m = \frac{\lambda_m}{\Lambda_{am} + \Lambda_{pm}} \tilde{B}_m (1 - f_m) R$$

\(^{16}\)This modeling assumption that only a fraction of players can actively readjust their decisions, in the same spirit of Calvo (1983), is widely used in the literature (e.g., Burdzy, Frankel, and Pauzner (2001) and He and Xiong (2012)). In the practice of Bitcoin, although it involves almost no cost of switching, inattention suffice to generate inertia in switching among pools. Our model predictions do not depend on the exact mechanisms of passive miners.
where Λ_{am} (a stands for active mining) is the hash rate contribution to pool m from all active miners. Throughout we use lower case λ to indicate individual miner’s decisions.

We use $m = 0$ to indicate solo mining, in which case $f_0 = \Lambda_{pm} = 0$. As a result, the active miner with exponential utility function $u(x) = \frac{1}{\rho} (1 - e^{-\rho x})$ chooses $\{\lambda_m\}_{m=1}^M$ to maximize

$$E \left[u \left(\sum_{m=0}^M X_m - C \sum_{m=0}^M \lambda_m \right) \right] = E \left[u \left(\sum_{m=0}^M \left(\frac{\lambda_m \hat{B}_m (1 - f_m)}{\Lambda_{am} + \Lambda_{pm}} \right) R - C \sum_{m=0}^M \lambda_m \right) \right].$$

Here, we denote cT as C. Since our analysis works under any choice of T, for brevity of notation we further normalize $T/D = 1$. Then certainty equivalent calculation implies that the hash contribution problem to each pool decouples from one another, and the optimization is equivalent to

$$\max_{\lambda_m \geq 0} \left[\frac{\Lambda_{am} + \Lambda_{pm}}{\rho \Lambda} \left(1 - e^{-\frac{\rho R (1 - f_m) \lambda_m}{\Lambda_{am} + \Lambda_{pm}}} \right) - C \lambda_m \right], \forall m, \quad (9)$$

where the global hash rate Λ is

$$\Lambda = \sum_{m=0}^M (\Lambda_{am} + \Lambda_{pm}). \quad (10)$$

In (9), the global hash rate Λ scales down the winning probability of each participating hash rate, so that in aggregate the block generation process is kept at a constant. This is a feature of many proof-of-work-based blockchain protocols such as Bitcoin, and the negative externality is important to understand our results later.

We impose two parametric assumptions, which significantly simplify our derivation and are also supported by empirical data.

Assumption 1. $\rho R < N$.

In our model, when facing a higher proportional fee, an active miner weighs two opposite effects: the first-order effect of a lower expected reward that expels the miner, and the second order effect of a lower risk that attracts the miner. This assumption holds under realistic parameters and requires the risk aversion to be adequately small to guarantee that the first-order effect dominates.

Assumption 2. $\rho C \left(\sum_m \Lambda_{pm} + \frac{R}{C} e^{-\rho R/N} \right) > 1 - e^{-\rho R}$.

16
The assumption requires that the sum of passive mining and the active mining in the absence of passive mining (which we later calculate to be \(\frac{R}{C} e^{-\rho R/N} \) in Proposition 1) is relatively large that solo-mining is not profitable given the difficulty level of mining. Solo-mining is not our economic mechanism and ruling it out allows us to greatly simplify the exposition.

Pool manager’s problem. A pool manager with passive hash rate \(\Lambda_{pm} \) sets a proportional fee \(f_m \) to maximize her expected utility.\(^{17}\) and \(\Lambda_{am} \) is the hash rate that the pool \(m \) is able to attract from active miners, which depends on the fee charged.

We study the fee-setting game among pools. Given \(\{\Lambda_{pm}\}_{m=1}^M \) and the fee charged by other pools \(f_{-m} \), the \(m \)-pool manager chooses \(f_m \) to maximize

\[
\max_{f_m} \frac{\Lambda_{am}(f_m) + \Lambda_{pm}}{\rho \Lambda(f_m, f_{-m})} \left(1 - e^{-\rho R f_m} \right). \tag{12}
\]

It is worth emphasizing that when pool managers choose their fees, these oligopolistic pools understand that the global hash power \(\Lambda \) depends on the fees charged by pool \(m \) and other pools \((-m)\), because pool fees affect pools sizes which in turn affects the global hash power. In other words, pool owners partially internalize the arms-race externality.

3.2 Definition of Equilibrium

Consider the class of symmetric subgame perfect equilibria where homogeneous active miners take the same strategies. The notion of “subgame” comes from that active miners are reacting to the fees posted by \(M \) pool manage paths. In other words, any pool is facing

\[f_m = \frac{\Lambda_{am}}{\Lambda_{am} + \Lambda_{pm}} f_m + \frac{\Lambda_{pm}}{\Lambda_{am} + \Lambda_{pm}} \alpha(f_m), \tag{11}\]

where \(\alpha(f) \in [f, 1] \) is weakly increasing in \(f \). One useful way to understand this function is the following: Suppose the manager owns a fraction \(\pi \) of the passive mining power, while the rest \(1 - \pi \) comes from other fee-paying loyal passive miners. For example, as revealed in an interview between Bitcoin Magazine and the CEO of the large mining pool ViaBTC, “(ViaBTC) had an investor at its early stage who provided us with the startup capital and hash rate, but didn’t take part in the decision-making and operating of the mining pool”, and “approximately one third of the hash rate is from our investor, and the rest from our customers.” Then \(\alpha(f) = \pi + (1 - \pi) f \) is increasing in \(f \), which is a special case of a monotone \(\alpha(f) \). For exposition ease, in the main text we set \(\alpha(f) = f \) and hence \(f_m = f_m \), although in an earlier draft we show that all the proofs go through with the more general formulation of \(f_m \) given in Equation (11).
an aggregate demand function as a function of the fee vector, and all homogeneous active miners are taking symmetric best responses to any potential off-equilibrium fee quotes.

Equilibrium Definition Consider the class of symmetric subgame perfect equilibria where homogeneous active miners take the same strategies. An equilibrium is a collection of \(\{f_m, \lambda_m\}_{m=1}^M \) so that

1. **Optimal fees:** Given \(\{f_m\} \) set by other pool managers, \(f_m \) solves pool manager \(m \)'s problem in (12) for all \(m \in \{1, 2, \ldots, M\} \);
2. **Optimal hash rates allocation:** Given \(\{f_m\}_{m=1}^M \) and \(\{\lambda_m\}_{m=1}^M \) solves every active miner’s problem in (9);
3. **Market clearing:** \(N\lambda_m = \Lambda_{am} \).

3.3 The Frictionless Benchmark

The initial size distribution of mining pools matters because we assume it is proportional to the measure of passive miners \(\{\Lambda_{pm}\}_{m=1}^M \). To highlight the role of passive miners in our model, we first analyze the model outcome absent passive miners as a benchmark.

Irrelevance of pool distribution. We first present a stark irrelevance result of pool size distribution in the frictionless case where \(\Lambda_{pm} = 0 \) for all \(m \)'s, i.e., in the absence of passive miners.

Proposition 1 (Irrelevance of Pool Size Distribution). Suppose \(\forall m \Lambda_{pm} = 0 \). The following allocation constitutes a class of symmetric equilibria, which is unique among all symmetric equilibria:

1. **Pool managers all charge zero fees:** \(f_m = 0 \) for all \(m \in \{1, 2, \ldots, M\} \);
2. **Symmetric miners set any allocation \(\{\lambda_m\}_{m=1}^M \), as long as the global hash rates \(\Lambda \) satisfies

\[
\Lambda = N \sum_{m=1}^M \lambda_m = \frac{R}{C} e^{-\rho R / N}.
\]

This class of equilibria features every active miner’s owning an equal share of each mining pool, and the exact pool size distribution \(\{\Lambda_{pm}\}_{m=1}^M \) is irrelevant.

In this class of equilibria, the global hash power that miners acquire is \(\Lambda = \frac{R}{C} e^{-\rho R / N} \), so that for each miner the marginal benefit of acquiring additional hash power hits the constant.
acquisition cost \(C \). Under zero fees, each individual miner is maximizing his objective in (9); and Assumption 2 rules out solo-mining. Pool managers charge zero fees for a Bertrand type argument: otherwise one pool manager can cut her fee to steal the entire market because they offer identical services with the same \(\Lambda_{pm} \) or fee.

Fixing the total hash power \(\Lambda \) in this economy, the allocation among pools reaches efficient risk-sharing among the homogeneous miners. As we discuss later, the results in the proposition are robust to entry of new pools. The key friction that drives the wedge from first-best allocation given the total hash power is really \(\Lambda_{pm} \).

Proposition 1 provides the insight that every active miner can always achieve perfect diversification by diversifying his endowed hash rate among all pools; there is no reason for pools to diversify themselves when individual miners diversify their allocation. Joining \(m \) pools with proper weights, so that each homogeneous miner owns equal share of each pool, is equivalent to joining a single large pool with the aggregate size of these \(m \) pools. In this aspect, Proposition 1 reflects the conventional wisdom that in a frictionless capital market investors can perfectly diversify by themselves, rendering no reason for conglomerates to exist solely for risk sharing.

This insight is thought-provoking given the numerous discussions on the centralization implications of risk diversification. In the Bitcoin mining community, media discourse and industry debates have centered on how joining larger pools are attractive and would lead to even more hash rates joining the largest pools, making the pools more concentrated; we revisit this topic in Section 5 when we discuss centralizing forces in decentralized systems. But Proposition 1 clarifies that as long as miners can engage in active risk diversification and join the pools in a frictionless way, there is no reason to expect that a single large pool necessarily emerges due to the significant risk diversification benefit it offers.

Proposition 1 also highlights a key difference between Bitcoin mining pools and traditional firms that provide valuable insurance to workers against their human capital risks (e.g., Harris and Holmstrom (1982); Berk, Stanton, and Zechner (2010)): In the Bitcoin mining industry, it is easy for miners to allocate their computational power across multiple pools. In contrast, it is much harder for workers to hold multiple jobs.

Financial innovation and arms race. At least in the frictionless benchmark, rather than worrying about the over-concentration of mining pools, we should instead understand how the their emergence affect the arms race of cryptocurrency mining.
In our model, the class of equilibria characterized by Proposition 1 do not feature the first-best outcome because the mining game is an arms race: acquiring an additional unit of hash rate raises the global hash power Λ, hence imposing negative externality on other miners by increasing the difficulty of the problem they are solving. However, solving a more difficult problem does not produce additional social surplus. This implies that in this mining economy, the first-best allocation has miners acquire ϵ hash power each, receiving R with almost no cost, and then share the reward equally among all miners.

Absent mining pools, the total global hash rate under solo mining only is $R e^{-\rho R}$, which is significantly smaller than the total global hash rate with mining pools, $R e^{-\rho R/N}$. Precisely when the risk-sharing benefit of mining pools is large (say, when N or ρ are large), the aggregate miner surplus with mining pool is lower than that without—an example of financial innovation/vehicle that seemingly benefits individuals but in aggregate could lower welfare.

This realization is of first-order importance for PoW-based blockchain consensus generation. In fact, we later show that even when pool owners charge fees and there are passive miners who do not diversify into various pools, the global hash rates with mining pools still more than ten times that without mining pools under realistic parameters.

3.4 Equilibrium Characterization

Now we allow the passive mining friction Λ_{pm}, and characterize the equilibrium quantity and distribution of mining activities.

Fees and active miners’ allocation. Since each infinitesimal individual active miner within the continuum takes the fee vector f_m, and more importantly the pool m’s total hash rates $\Lambda_m = \Lambda_{am} + \Lambda_{pm}$ as given, the first order condition from miners’ maximization (9) gives,

$$
\frac{R(1 - f_m)}{\Lambda} e^{-\rho R(1 - f_m) \frac{\lambda_m}{\Lambda_{am} + \Lambda_{pm}}} = C.
$$

18Due to our continuum specification of miners, an infinitesimal miner would not solo-mine because of his infinitesimal risk tolerance. The way to get around this artifact of modeling choice is to view active miners as groups of unit measures, and then apply the condition that marginally no active miner wants to acquire more solo hash rate.

19We need to be careful that our model does not account for benefits of using blockchains such as online security. But at least for Bitcoin, it is hard to justify its usage value exceeds the cost of energy consumption.
The left (right) hand side gives the marginal benefit (cost) of when allocating λ_m to a pool with size $\Lambda_m = \Lambda_{am} + \Lambda_{pm}$. For the marginal benefit, the first term is the risk-neutral valuation of the marginal benefit per unit of hash power; it is R times the probability of winning ($\frac{1}{\Lambda}$) given global hash rates Λ, adjusted by proportional fee. The second term captures the miner’s risk-aversion discount. Conditional on his allocation λ_m, the larger the pool size Λ_m he participates, the smaller the discount—this is exactly illustrated by Section 2.3. But conditional on the pool size, the risk-aversion discount worsens with his allocation λ_m. The optimal allocation rule equates marginal benefit with marginal cost, and the greater diversification benefit of larger pools leads to more participation of active miners (in an absolute sense).

In equilibrium we have $\Lambda_{am} = N\lambda_m$, therefore

$$\frac{\lambda_m}{\Lambda_{pm}} = \max \left\{ 0, \frac{\ln \frac{R(1-f_m)}{CA}}{\rho R(1-f_m) - N \ln \frac{R(1-f_m)}{CA}} \right\},$$

where zero captures the corner solution of a pool not getting any active miner (e.g., when f_m is high enough). Equation (15) directly leads to the following proposition characterizing how pool fees relate to equilibrium active mining in each pool.

Proposition 2 (Active Mining). In any equilibrium, and for any two pools m and m',

1. If $f_m = f_{m'}$, then $\frac{\lambda_m}{\Lambda_{pm}} = \frac{\lambda_{m'}}{\Lambda_{pm'}}$;
2. If $f_m > f_{m'}$ then we have $\frac{\lambda_m}{\Lambda_m} \leq \frac{\lambda_{m'}}{\Lambda_{m'}}$. If in addition $\lambda_{m'} > 0$, then $\frac{\lambda_m}{\Lambda_m} < \frac{\lambda_{m'}}{\Lambda_{m'}}$.

If pools are charging the same fee, then larger pools with greater diversification benefit attract more active miners, so much so that each pool grows with the same proportion. In a similar vein, pools that charge higher fees will have a slower growth, cross-sectionally.

Initial size and pool fee. Now for pool owners, the objective in (12) can be written as

$$\frac{\Lambda_{am}(f_m) + \Lambda_{pm}}{\Lambda(f_m, f_{-m})} \left(1 - e^{-\rho R f_m}\right) = \frac{\Lambda_{am}(f_m) + \Lambda_{pm}}{\Lambda_{am}(f_m) + \Lambda_{pm} + \Lambda_{-m}} \left(1 - e^{-\rho R f_m}\right)$$

where $\Lambda_{-m} = \sum_{m' \neq m} (\Lambda_{am'} + \Lambda_{pm'})$ is the global hash power lest pool m’s. Relative to the miner’s problem in (9), pool owners engage in oligopolistic competition, and take into consideration that f_m not only affects their pools’ hash rate but also the global hash rate.
Proposition 3 (Endogenous Pool Fees). *For any two pools m and m', if $\Lambda_{pm} > \Lambda_{pm'}$, then $f_m \geq f_{m'}$ in equilibrium.*

The intuition of Proposition 3 is rooted in that pools with a larger initial size of passive miners would take into account a larger “global hash rate impact” (increase in mining difficulty) by changing their fees, akin to the standard “price impact” in any monopolistic setting. To see this, we plug Eq. (15) into Eq. (16), while clearly indicating the dependence of global hash rate on pool fees. We obtain

$$
\Lambda_{pm} \cdot \frac{1 - e^{-\rho R f_m}}{\Lambda(f_m)} \cdot \max \left\{ 1, \frac{\rho R (1 - f_m)}{\rho R (1 - f_m) - N \ln R(1-f_m)} \right\}.
$$

(17)

As the expression reveals, if pool owners ignore the fee impact on global hash rate, then $\Lambda(f_m)$ would be a given constant Λ, and the optimal choice of f_m will maximize the term “value per unit of Λ_{pm}” and thus completely separates from initial pool size Λ_{pm}. Consequently, pool owners all charge the same fee, and hence attract active mining in proportion to their initial size.

However, pool managers who behave as oligopolists in this economy understand that $\Lambda'(f_m) < 0$; they take into account the fact that charging a lower fee brings more active miners, pushing up the global hash rates Λ and hurting her pool profits. This is the above-mentioned arms race effect. Because every unit of active hash rate affects the aggregate hash rates equally, on the margin, larger pools who also take into account of the “global hash rate impact” or the “arms race” would have a stronger incentive to raise fee and curb the increase of mining difficulty. This is akin to the standard oligopolistic setting in which firms with larger market power charging higher prices and produce relatively less.\(^{20}\)

Equilibrium pool growth. Combining Propositions (2) and (3), we arrive at our key conclusion concerning the distribution of pool sizes.

\(^{20}\)Our results are not driven by the fact that pool managers benefit from charging a higher fee to get higher revenues from the passive miners, which is trivially larger when Λ_{pm} is greater. In fact, absent active mining and the “global hash rate impact,” all pools would charge the same fee $f = 1$ to maximize the revenue from passive miners. Therefore, this consideration only affects equilibrium fees charged through its interaction with active mining and the “global hash rate impact.”
Corollary 1 (Pool Growth Rate). Pools with larger initial size Λ_{pm} have weakly smaller $\frac{\Lambda_{am}}{\Lambda_{pm}}$, leading to a weakly lower growth rate.

This result implies that mining pools do not grow more concentrated. A natural force from the market power of larger pools combined with the arms race nature of mining technology limits their growth, allaying the concern that the rise of mining pools would lead to excessive centralization and instability of the consensus system.

Comparative statics and intuition. For illustration, we investigate the properties of a three-pool equilibrium in Figure 2 by studying the comparative statics of the equilibrium objects: the endogenous fees charged by pool managers $\{f_1, f_2, f_3\}$, as well as equilibrium pool net growth $\{\Lambda_{a1}/\Lambda_{p1}, \Lambda_{a2}/\Lambda_{p2}, \Lambda_{a3}/\Lambda_{p3}\}$.

Figure 2: Comparative Statics of Pool Fees and Growth

Equilibrium fees $\{f_1, f_2, f_3\}$ and the net growth rate of two pools $\Lambda_{a1}/\Lambda_{p1}, \Lambda_{a2}/\Lambda_{p2}, \Lambda_{a3}/\Lambda_{p3}$ are plotted against miner risk aversion ρ and unit hash power cost C, respectively. The baseline parameters are: $R = 1 \times 10^5$, $\Lambda_{p1} = 5 \times 10^5$, $\Lambda_{p2} = 3 \times 10^5$, $\Lambda_{p3} = 1 \times 10^5$, and $N = 10$. In Panel A and C: $C = 1.375 \times 0.12/(3600 \times 13.5) \times 600 = 0.00204$. In Panel B and D: $\rho = 2 \times 10^{-6}$.

Without loss of generality, we set $\Lambda_{p1} > \Lambda_{p2} > \Lambda_{p3}$. Panel A presents how the equilibrium
fees respond to exogenous changes in risk aversion ρ in this economy, and Panel B presents how the equilibrium fees vary with the unit hash power acquisition cost C.

Not surprisingly, when the economic agents become more risk averse, individual miners’ demand for risk-diversification increases, and mining pools charge higher fees as shown in Panel A of Figure 2. At the same time, larger pools charge higher fees, as predicted by Proposition 3. Panel C shows that larger pools hence grows slower. Though not plotted in Figure 2, it is clear from Panel C that the endogenous global hashrates are decreasing in the risk aversion.

Panel B and D illustrate how the equilibrium outcomes change when we vary the constant hash power acquisition cost C. The lower the hash power acquisition cost, the more the active hash rates to compete for mining pools, and the lower the fee given greater competition. The cross-pool fees distribution and pool growth are similar to other panels.

The social cost of mining pools. How much do mining pools exacerbate the mining arms race? And how does the oligopolistic competition among mining pools affect the endogenous global hashrates as an endogenous outcome? Figure 3 provides answers to these questions.

Each panel in Figure 3 plots the endogenous global hashrate, as a function of reward R, under three scenarios: 1) solo-mining without pools; 2) full risk-sharing implied by Proposition 1 without passive mining friction; and 3) oligopolistic competition with passive hashrates as initial pool size. For scenario 3), it suffices to illustrate with symmetric oligopolistic case with two pools; note the arms race effect should raise more concern by pool managers for an economy with smaller number of pools.

To illustrate the point of risk-sharing, Panels A and B plot Λ for two risk-aversion coefficients ρ; Panels C and D plot Λ for two values of the active miner measure N. First of all, we observe that for solo-mining, the implied global hash rates increases with reward R initially but actually decreases when R is sufficiently large; this is because the risk becomes overwhelmed when R increases.

Now we introduce mining pools. Relative to solo mining, both the full risk-sharing and market equilibrium cases produce about ten times of global hash rates for $\rho = 2 \times 10^{-5}$ and $R = 10^5$, for both levels of N. This wedge gets amplified greatly for $R = 2 \times 10^5$, which is a reasonable calibration for peak Bitcoin price: the hash rates with mining pools are about $40 \sim 50$ times of that with solo mining. The arms race escalates when miners are more risk-averse.
Figure 3: Global Hash rates under Solo, Full Risk Sharing, and Equilibrium

Global hash rates Λ is plotted against block reward R under various parameters. We consider symmetric M pools each with passive hash rates $L_p = 3 \times 10^5$. The common parameter is $C = 1.375 \times 0.12/(3600 \times 13.5) \times 600 = 0.00204$, and other parameters are given as following. Panel A: $M = 2, N = 10, \rho = 2 \times 10^{-5}$ Panel B: $M = 2, N = 10, \rho = 1 \times 10^{-5}$ Panel C: $M = 2, N = 500, \rho = 2 \times 10^{-5}$ Panel D: $M = 2, N = 500, \rho = 1 \times 10^{-5}$.

As expected, the market equilibrium generates lower global hash rates compared to the full risk-sharing benefit, but not by much; their difference becomes invisible N is large (Panel C and D). Although pool managers (here, only two) take into account the arms race effect and hence discourage hash power acquisition by raising their fees, pools are also engaging in competition which is the root of arms race.

The take-away from Figure 3 is that the introduction of mining pools as a form of financial innovation exacerbates the arms race and is responsible to the egregious amount of energy consumed in cryptocurrency mining in recent years.
It is important to mention that we do acknowledge the benefits of PoW protocols and the arms race nature of competition (Cong and He (2018) and Abadi and Brunnermeier (2018), among others). But at least for Bitcoin, the social benefit seems small compared to the energy consumption and environmental damage. First, the verifications on bitcoin blockchain are simple, presumably alternative designs can generate similar consensus at lower costs. Moreover, above certain threshold, the security benefit does not increase linearly with the hash power devoted to mining.

4 Empirical Evidence

The theoretical analyses in previous sections offer three predictions. First, as the Bitcoin mining market becomes increasingly dominated by mining pools, the global hash rate increases significantly. This is apparent from Figure 1. Moreover, cross-sectionally, a pool with larger starting size tends to (i) charge a higher fee, and (ii) grow slower in percentage terms. In this short section we provide supporting evidence for these two predictions.

Data description. Our data consist of two major parts, one on pool size evolution and the other on pool fee/reward type evolution. In the first part, a pool’s size (share of hash rates) is estimated from block-relay information recorded on the public blockchain (see BTC.com). Specifically, we count the number of blocks mined by a particular pool over some time interval, divide it by the total number of newly mined blocks globally over the same time interval; the ratio is the pool’s estimated hash rate share. Balancing the trade-off between real-timeness and precision of estimation, we take the time interval to be weekly.\(^{21}\)

In part two, the fee contract information is obtained from Bitcoin Wiki. We scrape the entire revision history of the website (477 revisions in total) and construct a panel of pool fee evolutions over time.\(^{22}\) Pool fees are aggregated to quarterly frequency by simple average.

\(^{21}\)Our estimation procedure is standard. For example, blockchain.info provides real-time updates about estimated hashrate distribution over the past 24 hours, 48 hours, and 4 days using the same method. Bitoinity tracks about 15 large mining pools’ real time hashrate changes on an hourly basis. We favor weekly frequency over daily frequency because among all the pools that successfully find at least one block within a quarter, only (more than) 1.96% (42%) do not find any blocks within the first week (day) of that quarter. This is important because later analysis uses the estimated hashrate share within the first week as the initial pool size for the quarter.

\(^{22}\)Two large pools are missing from the Wiki: Bixin (which was available in the wiki as HaoBTc prior to Dec 2016), and BTC.top, for which we fill their information through direct communication with the pools. Bitfury, which is also missing from the Wiki, is dropped as it is a private pool not applicable to our analysis.
Figure 4: Empirical Relationships of Pool Sizes, Fees, and Growths

This figure shows the binned plots of the changes in $log\text{Share}$ (Panel A) and Proportional Fees (Panel B) against $log\text{Share}$. Share is the quarterly beginning (the first week) hash rate over total market hash rate. Fees are the quarterly averaged proportional fees. Within each quarter t, $\Delta log\text{Share}_{i,t+1}$, Proportional Fee$_{i,t}$, and logShare$_{i,t}$ are averaged within each logShare$_{i,t}$ decile, and these mean values are plotted for 2012-2013, 2014-2015, and 2016-2017, respectively. Red lines are the fitted OLS lines, with t-stat reported at the bottom. Data sources and descriptions are given in Section 4.
Table 2: Pool Sizes, Fees, and Growths: Regression Results

This table reports the regression results when we regress Proportional Fee and \(\Delta \log \text{Share} \) on \(\log \text{Share} \), respectively. Share is the quarterly beginning hashrate over total market hashrate. Fees are the quarterly averaged reward fees. Within each quarter \(t \), \(\Delta \log \text{Share}_{i,t+1} \), Proportional Fee\(_{i,t}\), and \(\log \text{Share}_{i,t} \) are averaged within each \(\log \text{Share}_{i,t} \) decile. The resulting mean values of \(\Delta \log \text{Share}_{i,t+1} \) and Proportional Fee\(_{i,t}\) are then regressed on the mean value of \(\log \text{Share}_{i,t} \) respectively over two years in the left three columns, over the entire sample period in the fourth column, and in addition control for quarter fixed effects in the fifth. Data sources and their descriptions are given in Section 4.

Panel A: \(\Delta \log \text{Share} \)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>logShare</td>
<td>-0.219**</td>
<td>-0.153***</td>
<td>-0.122**</td>
<td>-0.176***</td>
<td>-0.176***</td>
</tr>
<tr>
<td></td>
<td>(-3.36)</td>
<td>(-3.80)</td>
<td>(-3.42)</td>
<td>(-6.12)</td>
<td>(-6.00)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.200*</td>
<td>0.135*</td>
<td>0.108*</td>
<td>0.153***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.01)</td>
<td>(2.47)</td>
<td>(2.21)</td>
<td>(3.77)</td>
<td></td>
</tr>
<tr>
<td>Quarter FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Nobs</td>
<td>73</td>
<td>80</td>
<td>78</td>
<td>235</td>
<td>235</td>
</tr>
</tbody>
</table>

Panel B: Proportional Fee

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>logShare</td>
<td>0.452***</td>
<td>0.203*</td>
<td>0.487***</td>
<td>0.318***</td>
<td>0.355***</td>
</tr>
<tr>
<td></td>
<td>(3.62)</td>
<td>(2.08)</td>
<td>(5.55)</td>
<td>(5.24)</td>
<td>(5.59)</td>
</tr>
<tr>
<td>Intercept</td>
<td>0.431*</td>
<td>0.683***</td>
<td>0.924***</td>
<td>0.700***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.07)</td>
<td>(5.24)</td>
<td>(11.38)</td>
<td>(8.55)</td>
<td></td>
</tr>
<tr>
<td>Quarter FE</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Nobs</td>
<td>38</td>
<td>51</td>
<td>37</td>
<td>126</td>
<td>126</td>
</tr>
</tbody>
</table>

\(t \) statistics in parentheses

* : \(p < 0.05 \), ** : \(p < 0.01 \), *** : \(p < 0.001 \)

The two parts are then merged to construct a comprehensive panel data on pool size and fee evolution. Our main analysis focuses on the evolution of pool sizes at the quarterly frequency given potentially lagged adjustment. Table 1 in Section 2 provides summary statistics of the data.

Empirical results. Since our model predictions concern about cross-sectional relationships, every quarter we first sort pools into deciles based on the start-of-quarter pool size (estimated hashrate share within the first week). We then treat each decile as one observation, and calculate the average proportional fee and average log growth rate across mining pools for each decile.

Figure 4 shows the scatter plots for these decile-quarter observations, with Panel A (B) being the relationship between initial pool size and proportional fee (subsequent pool size growth rate). For robustness, we present the scatter plots for three two-year spans 2012-
2013, 2014-2015, and 2016-2017. As predicted by our theory, Figure 4 Panel A shows that larger pool grows in a slower pace, and Panel B shows that cross-sectionally a larger pool charges a higher fee. Importantly, all regression coefficients are statistically significant at 5% level for all three time periods. The detailed regression results are reported in Table 2.

5 Discussions and Extensions

In this section, we first examine how the market power of mining pools survives pool entry. We then discuss how our model applies to alternative consensus protocols such as proof-of-stake. Along the way, we also present an economist’ perspective on several important issues such as the nature of risk and regarding other centralization and decentralization forces.

5.1 Entry and Market Power of Mining Pools

Our model takes the pool managers with endowed passive hash rates as exogenously given. Since our economic mechanism borrows extensively from the literature of industrial organization, this section discusses the pool’s intrinsic monopoly power thanks to its passive hash rates, and show that our key economic forces are robust to potential entry of competing mining pool managers.

We first consider the possibility of free entry of pool managers who do not have passive hash rates. Due to the nature of portfolio risk-diversification, incumbent pool managers with passive hash rates are facing a monopolistic competition, in which they are offering strictly better products/services than the entry pool without. In fact, incumbent pool managers are as if with some monopolistic power, and in equilibrium always charge some strictly positive fees to some active miners. We then briefly discuss the potential entry of pool managers with passive rates, so that the number of pools is endogenously determined by the entry condition. Finally, even if there are infinite number of pools, the nature of monopolistic competition still survives with each pool making strictly positive profits.

Pool entry without passive hash rates. We denote the number of incumbent pools with passive hash power by M^I. Suppose new pool managers can enter the market by incurring a setup cost $K \geq 0$ each; the case of $K = 0$ corresponds to the case of free entry. We assume that entrant managers, who are financially constrained entrepreneurs, do not have
passive hash rates (e.g., they lack supporters loyal to their pools) and start with $\Lambda_{pm} = 0 \forall m \in \{M^I + 1, \cdots, M^I + M^E\}$, where M^E is the endogenous number of new entrants. Denote $M = M^I + M^E$ the total number of mining pools.

In our model, the entrant pools without passive hash rates may attract a positive measure of active miners as they may charge a low fee in equilibrium. But, the following proposition reveals that without loss of generality, at most one pool without passive hash rates enters, and incumbent pools always enjoy a certain amount of market power.

Proposition 4 (Entry and Market Power of Incumbent Pools).

1. For any $K > 0$, at most one pool enters. When $K = 0$, equilibrium outcomes for active miners’ allocation and payoff are equivalent to the case with one pool entering and charging zero fee.

2. Incumbent pools with passive hash rates always charge positive fees and attract positive measure of active hash power, even with free entry ($K = 0$).

The first part of the proposition follows from Proposition 1. Entrant pools are homogeneous and compete away any net profit among themselves. Therefore in equilibrium at most one pool enters and breaks even. Proposition 1 implies that when $K = 0$, the pool size distribution is irrelevant from active miners’ perspective.

The second part has profound implications. Given that individual active miners face a portfolio diversification problem, incumbent pools always retain some monopolistic power even under free entry. For any fee f_m charged by incumbent m, the marginal benefit of allocating the first infinitesimal hash rate to this incumbent can be calculated by setting λ_m and Λ_{am} to zero in $R(1 - f_m)e^{-\rho R(1 - f_m)}\frac{\lambda_m}{\lambda_m + \Lambda_{pm}}$ in Eq. (14), which gives

$$\frac{R(1 - f_m)}{\Lambda},$$

exactly the post-fee risk-neutral valuation.

Suppose, counter-factually, that all incumbent pools charge zero fee $f_m = 0$; then the risk-neutral valuation $\frac{R}{\Lambda}$ in Eq. (18) must exceed the marginal cost C and in any equilibrium with strictly positive active mining (due to the risk-aversion discount in Eq. (14)).

As a result, incumbent pools start charging positive fees, which inefficiently pushes more active

23 In equilibrium, positive active mining in the entry pool with zero fee requires that $\frac{R}{\lambda}e^{-\rho R/N} = C$, implying $\frac{R}{\Lambda} > C$.

30
hash rates toward the zero-fee entry pool relative to the optimal risk sharing benchmark (absent of fees).

Compared with a standard perfectly competitive market wherein a Bertrand-type price competition allows entry firms to compete away incumbents’ profits, incumbent pools here with strictly positive passive hash rates face a monopolistic competition: they are essentially offering products with higher quality than entry pool with zero passive hash rates. In particular, the first infinitesimal unit of hash rates allocated in incumbent pools with $\Lambda_{pm} > 0$ corresponds to a risk-neutral valuation, while it has a strictly positive risk-aversion discount in the new entry pool without passive hash rates.

We also note that with incumbents’ market power, the active miners’ optimal risk sharing (absent of fees) is never achieved, resulting in a welfare distortion fixing the level of aggregate hash rates. But as we discussed earlier, the lack of full risk-sharing alleviates the arms race and reduce energy consumption.

Pool entry with passive hash rates and number of incumbents. Given that entrants without hash rates essentially offer inferior quality of goods, what if some new pool managers with passive hash rates can enter?

Note, for entry with passive hash rates that are not costless, the entry costs are strictly positive ($K > 0$). Given a fixed set-up cost, a finite number of pools enter. Then the equilibrium outcome resembles the one in our main model, with an endogenous number of incumbent pools M^f so that it is no longer profitable to enter. The nature of post-entry industrial organization of mining pools is qualitatively similar, with each pool exerting its monopolist power by charging positive fees to its active mining customers. As in any monopolistic competition, entry continues until the profits cannot cover the entry costs (including the acquisition cost of passive rates and set-up cost).

One thought-provoking question is, given the equilibrium entry of total passive hash rates, can we restore perfect competition by increasing the number of competing pools and at the same time shrink the pool size (e.g., splitting the pools)? In other words, would pools lose their monopolistic power when we have $M \to \infty$? The discussion about Eq.(14) suggests a negative result, as long as the size of active miner is infinitesimal relative to the size of mining pool.²⁴ In fact, if we have a continuum of pools who take the global hash rates

²⁴For instance, in theory with financial intermediaries we often assume a continuum of banks and each bank serves a continuum of depositors.
Λ as given, then the same logic as in the discussion of Proposition 3 in Section 3.4 implies that all pool managers enjoy a positive market power and charge the same strictly positive fee as in Eq.(17) in the absence of the arms race effect.

5.2 The Nature of Risk

Given that risk-sharing drives the formation of mining pools, several questions regarding the nature of the risk arise. First, it is clear that a miner’s underlying mining risk \(\tilde{B} \), i.e., whether and when a miner finds the solution, is idiosyncratic in its nature. Our paper emphasizes the importance of diversifying idiosyncratic risk (via pools), not the pricing of idiosyncratic risk. Idiosyncratic risk matters little for pricing exactly because agents diversify it out.

Second, there are many anecdotal evidence that miners are under-diversified for their idiosyncratic mining incomes. It is also important to realize that throughout our observation period, the mining income often represents a significant source of the miner’s total income, justifying the relevance of diversifying the idiosyncratic risk in this context.\(^{25}\)

Third, why blockchain protocols randomize the allocation of newly minted cryptocurrencies or crypto-tokens to start with? Although outside our model, we believe the design is motivated by the need to ensure proper ex-post incentives of record-generation once a miner has mined a block. If a miner always gets paid deterministic rewards in proportion to his hash power no matter who successfully mines the block, then a successful miner who puts in very little hash power (and thus gets very little reward) worries less about not being endorsed by subsequent miners because the benefit of mis-recording could outweigh the expected cost of losing the mining reward.

Finally, we can easily introduce some systematic risk in the mining reward \(\tilde{R} \), which we take as deterministic so far. The Bitcoin mining reward these days is predominantly determined by the price of the Bitcoin. If—which is a big if—Bitcoin ever becomes an important private money that is free from inflation (due to rule-based supply), as some advocates envision, then its exchange rate against fiat money would presumably be driven by macroeconomic shocks such as inflation. It constitutes an interesting future study to analyze the role of systematic risk in our framework, especially when \(\tilde{R} \) offers some diversification

\(^{25}\)The recent introduction of future contracts on CBOE and CME may alleviate this problem in a significant way, but it is unclear how long it takes for the miner community to actively trading on the future contracts or for more derivatives and insurance products to be introduced.
benefit for normal investors in the financial market.

5.3 General Implications for Consensus Protocols

Proof-of-work protocols. Our model can help us gain better understanding of the centralizing and decentralizing forces in blockchain-based systems beyond Bitcoin, especially for those that rely on proof-of-work. For example, Ethereum, a major blockchain-based platform with its native cryptocurrency having a market valuation second only to Bitcoin, also relies on a proof-of-work process. For each block of transactions, be it payments or smart contracting, miners use computation powers to solve for crypto-puzzles. More specifically, the miners run the block’s unique header metadata through a hash function, only changing the ‘nonce value’, which impacts the resulting hash value. If the miner finds a hash that matches the current target, the miner is awarded ether and broadcast the block across the network for each node to validate and add to their own copy of the ledger. Again, the proof-of-work protocol (The specific proof-of-work algorithm that ethereum uses is called ‘ethash’) here makes it difficult for miners to cheat at this game, because the puzzles are hard to solve and the solutions are easy to verify. Similar to Bitcoin, the mining difficulty is readjusted automatically such that approximately every 12-15 seconds, a miner finds a block. Ethereum, along with other cryptocurrencies such as Bitcoin Cash (BCH), Litecoin (LTC), and ZCash (ZEC) that rely on PoW all witness pool formations.

(Delegated) proof-of-stake protocols A popular alternative to PoW protocols is the Proof-of-Stake (PoS) protocol, especially in light of the energy consumption concerns. The edX course titled “Blockchain for Business–An Introduction to Hyperledger Technologies” explains PoS:

“The Proof of Stake algorithm is a generalization of the Proof of Work algorithm. In PoS, the nodes are known as the validators and, rather than mining the blockchain, they validate the transactions to earn a transaction fee. There is no mining to be done, as all coins exist from day one. Simply put, nodes are randomly selected to validate blocks, and the probability of this random selection depends on the amount of stake held.”

PoS systems are more environmentally friendly and efficient because the aggregate electricity consumption is much lower. Moreover, Saleh (2017) shows that once we endogenize crypto-token price and the speed to consensus, the “nothing at stake” problem that critics
often cite goes away. But for a proof-of-stake method to work effectively, there still needs to be a way to select which user gets to record the next valid block. Selecting deterministically based on size alone would result in a permanent advantage for the largest stake holder. That is why “Randomized Block Selection” and the “Coin Age Based Selection” are often used in practice.

In the former, a formula which looks for the user with the combination of the lowest hash value and the size of their stake, is used to select the validator. Nxt and BlackCoin are two examples using randomized block selection method. The coin age based system, on the other hand, selects the validator based on the coin age which is calculated by multiplying the number of days the cryptocurrency coins have been held as stake by the number of coins that are being staked. Users who have staked older and larger sets of coins have a greater chance of being assigned the block recorder. After adding a block, their coin age is reset to zero and then they must wait a minimum period of time before they can sign another block. Peercoin is a notable example that uses the coin age selection process combined with the randomized selection method.

No matter which method is used, most PoS protocols involve a reward in the form of a transaction fee and sometimes newly minted coins. Because the reward comes stochastically, the same risk-sharing motive should drive the formation of “staking pools.” This indeed happens. The largest players such as StakeUnited.com, simplePOSpool.com, and CryptoUnited typically charge a proportional fee of 3% to 5%. An individual’s problem of allocating the stakes she has is exactly the same as in (9), with \(\lambda_m \) indicating the stakes allocated to pool \(m \). All our results go through in such a case, with the caveat that consensus generation is no longer socially wasteful.

Even though many PoS protocols such as those in QTUM, Reddcoin, and Blackcoin can be captured by our model, we caution the readers that in practice each cryptocurrency issuer most likely customizes this system with a unique set of rules and provisions as they issue their currency or switch over from the proof-of-work system. For example, Ethereum currently is considering switching from PoS to Casper system which is based on Byzantine Fault Tolerance protocols (a variant of PoS); DASH uses a hybrid PoW and PoS protocol.

Moreover, this is a rapidly evolving industry, and there are multiple other systems and methodologies of transaction verification and consensus generation being tested and experimented with. For example, Delegated-Proof-of-Stake (DPoS) has been widely adopted to
addresses the famous Nothing-at-Stake problem in PoS networks in which a small group of validators can take control of the network. **Bitshares (BTS), LISK, and ARK** are notable examples. Stakeholders in DPoS vote for delegates (typically referred to as block producers or witnesses) who maintain consensus records and share the coinbase rewards with the stakeholders in proportion to their stakes after taking their own cuts, just like the pool owners in our model who charge a fee and give proportional rewards to individual miners.\(^\text{26}\)

Even though our model focuses on PoW protocols, it applies to the industrial organization of players in the Blockchain consensus generation markets with risky rewards. Staking markets with PoS and DPoS are just notable examples.

5.4 Centralization in Decentralized Systems

The key innovation of the blockchain technology does not merely entail distributed ledgers or hash-linked data storage system. In fact, many technologies and applications preceding blockchain provide these functionalities already. It is the functionality of providing decentralized consensus that lies at the heart of the technology (e.g., Cong and He (2018)), and proof-of-work as manifested in Bitcoin mining plays an important role in the consensus generation process (e.g., Eyal (2015)). Given that the blockchain benefits are predicated on adequate decentralization, it is natural to worry about over-concentration in Bitcoin mining (e.g. Gervais, Karame, Capkun, and Capkun (2014)).

In this paper we have focused on the risk-sharing channel, which serves a centralizing force, and the endogenous growth channel as a decentralizing force. There are many other channels that matter too. For example, Chapman, Garratt, Hendry, McCormack, and McMahon (2017), de Vilaca Burgos, de Oliveira Filho, Suares, and de Almeida (2017), and Cong and He (2018) discuss how the concern for information distribution naturally makes nodes in blockchain networks more concentrated.

Conventional wisdom in the Bitcoin community has proposed several reasons why a mining pool’s size may be kept in check: (1) ideology: bitcoin miners, at least in the early days, typically have strong crypto-anarchism background, for whom centralization is against their ideology. This force is unlikely to be first-order as Bitcoin develops into a hundred-billion-

\(^\text{26}\)Delegates on LISK, for example, offer up to more than 90% shares of the rewards to the voters. As of Oct 2018, about 80 percent offer at least 25% shares (https://earnlisk.com/) Some DPoS-based systems such as BTS and EOS traditionally have delegates paying little or no rewards to stakeholders, but that is changing. See, for example, https://eosuk.io/2018/08/03/dan-larimer-proposes-new-eos-rex-stake-reward-tokens/
dollar industry; (2) sabotage: just like the single-point-of-failure problem in traditional centralized systems, large mining pools also attract sabotages, such as decentralized-denial-of-service (DDoS) attacks from peers. While sabotage concerns could affect pool sizes, it is outside the scope of this paper and left for future research; (3) trust crisis: it has been argued that Bitcoin’s value builds on it being a decentralized system. Over-centralization by any single pool may lead to collapse in Bitcoin’s value, which is not in the interest of the pool in question. Empirical evidence for this argument, however, is scarce. There is no significant results when we associate the HHI of the mining industry with bitcoin prices. Nor do we find any price response to concerns about GHash.IO 51% attack around July in 2014.

6 Conclusion

Our paper’s contribution is three-fold. First, we formally develop a theory of mining pools that highlights risk-sharing as a natural centralizing force. When applied to proof-of-work-based blockchains, our theory foremost reveals that financial innovations or vehicles that improve risk-sharing can aggravate the arms race of mining, multiplying the energy consumption and social cost. Second, we explain why consensus generation activities such as Bitcoin mining may be adequately decentralized over time. We empirically document the market structure of Bitcoin mining pools that supports our theory. Albeit not necessarily the only one, our explanation closely ties to the risk-sharing benefit — the main driver for the emergence of mining pools in practice in the first place. Our framework therefore serves as a backbone upon which other external forces (e.g. DDoS attacks) could be added. Finally, our paper adds to the literature on industrial organization by incorporating the network effect of risk-sharing into a monopolistic competition model and highlighting in the context of cryptocurrency mining markets the roles of risk and fee on firm-size distribution.

As a first economic study on the complex industry of mining pools, we have to leave many interesting topics to future research. For example, we do not take into account potential pool collusion or alternative pool objectives. Anecdotally, there is speculation that a large pool ViaBTC, along with allies AntPool and BTC.com pool, are behind the recent promotion of

27See, for example, Vasek, Thornton, and Moore (2014). Owners or users of other mining pools have incentives to conduct DDoS attacks because it helps reduce the competition they face and potentially attract more miners to their pools. Opposition of Bitcoin, such as certain governments, banks, traditional payment processors may also attack. For a summary, see http://www.bitecoin.com/online/2015/01/11102.html.
Bitcoin Cash, a competing cryptocurrency against Bitcoin. Hence these pools’ behavior in Bitcoin mining may not necessarily be profit-maximizing. We do not consider the effect of concentration in other stages along the vertical value chain of bitcoin mining; for instance, Bitmain, the owner of AntPool and BTC.com, as well partial owner of ViaBTC, is also the largest Bitcoin mining ASIC producer who currently controls 70% of world ASIC supply. As we focus on pool formation and competition, we leave undisussed an orthogonal (geographic) dimension of mining power concentration: locations with cheap electricity, robust network, and cool climate tend to attract disproportionately more hash rates. In this regard, our findings constitute a first-order benchmark result rather than a foregone conclusion.

References

Abadi, Joseph, and Markus Brunnermeier, 2018, Blockchain economics, Discussion paper, mimeo Princeton University.

Biais, Bruno, Christophe Bisiere, Matthieu Bouvard, and Catherine Casamatta, 2018, The blockchain folk theorem, .

de Vilaca Burgos, Aldenio, Jose Deodoro de Oliveira Filho, Marcus Vinicius Cursino Suares, and Rafael Sarres de Almeida, 2017, Distributed ledger technical research in central bank of brazil, .

Eyal, Ittay, 2015, The miner’s dilemma, in *Security and Privacy (SP), 2015 IEEE Symposium on* pp. 89–103. IEEE.

Huberman, Gur, Jacob D Leshno, and Ciamac C Moallemi, 2017, Monopoly without a monopolist: An economic analysis of the bitcoin payment system, .

Lee, Sherman, 2018, Bitcoin’s energy consumption can power an entire country – but eos is trying to fix that, Discussion paper, https://www.forbes.com/sites/shermanlee/2018/04/19/bitcoins-energy-consumption-can-power-an-entire-country-but-eos-is-trying-to-fix-that/#45c9a5e91bc8.

Li, Jiasun, 2015, Profit-sharing, wisdom of the crowd, and theory of the firm, Discussion Paper.

Li, Jiasun, 2017, Profit sharing: A contracting solution to harness the wisdom of the crowd, .

Li, Jiasun, and William Mann, 2018, Initial coin offering and platform building, .

Malinova, Katya, and Andreas Park, 2016, Market design for trading with blockchain technology, Available at SSRN.

Mian, Atif, and Amir Sufi, 2015, House of debt: How they (and you) caused the Great Recession, and how we can prevent it from happening again (University of Chicago Press).

Appendix A: Proofs of Lemmas and Propositions

A1. Proof of Proposition 1

Proof. We prove the more general case with potential entrant pools. We start with individual miner’s problem in Eq. (9). With $\Lambda_{pm} = 0$, the derivative with respect to λ_m is

$$
\frac{1}{\Lambda} R(1 - f_m) e^{-\rho R(1-f_m) \frac{\lambda_m}{\Lambda_{am}}} - C
$$

(19)

Note that in a symmetric equilibrium, $\Lambda_{am} = N\lambda_m$. Therefore the marginal utility of adding hash power to pool m is simply

$$
\frac{1}{\Lambda} R(1 - f_m) e^{-\rho R(1-f_m) / N} - C
$$

(20)

which is strictly monotone (either decreasing or increasing) in f_m over $[0, 1]$. Then an equilibrium must have f_m being the same for all incumbent pools, for otherwise a miner can profitably deviate by moving some hash rate from one pool to another. If all incumbent pools are charging positive fees, then at least one pool owner can lower the fee by an infinitesimal amount to gain a non-trivial measure of hash power, leading to a profitable deviation. Therefore, $f_m = 0 \forall m \in \{1, 2, \ldots, M\}$, where M denotes the number of incumbent pools. We use M to denote the total number of entrant and incumbent pools.

Now suppose we have entrants who can enter by paying K, they cannot possibly charge a positive fee because otherwise all miners would devote hash power to incumbents who charge zero fees. Given that they are then indifferent between entering or not, any number of entrants could be an equilibrium outcome if $K = 0$. If K is positive, they cannot enter and recoup the setup cost.

Now for individual miners to be indifferent between acquiring more hash power or not, the global hash rate Λ has to equalize the marginal benefit of hash power with its marginal cost C, which leads to $\Lambda = \frac{R}{C} e^{-\rho R / N}$. Therefore the payoff to each miner is

$$
\frac{1}{\rho \Lambda} \left[\sum_{m=1}^{M} \Lambda_{am} \left(1 - e^{-\rho R \frac{\lambda_m}{\Lambda_{am}}} \right) \right] - \frac{R}{N} e^{-\rho R / N} = \frac{1}{\rho} (1 - e^{-\rho R / N}) - \frac{R}{N} e^{-\rho R / N},
$$

(21)

where we have used the fact that $\sum_{m=1}^{M} \Lambda_{am} = \Lambda$, the sum of all computational power of active miners in consideration with an aggregate measure N. And the utility from mining in pools is strictly positive, as it is easy to show that RHS is strictly positive when $R > 0$. The exact distribution of pool size does not matter as long as $\sum_{m=1}^{M} \lambda_m = \lambda_a = \Lambda / N = \frac{R}{C} e^{-\rho R / N}$. We note that this is not the first-best outcome because a social planner would set the hash rate to arbitrary small to avoid any energy consumption.

A2. Proof of Proposition 2

Proof. Obviously, for pools charging the same f_m, the RHS is the same, implying $\frac{\lambda_m}{\Lambda_{pm}}$ is the same. Now, because of free entry of mining (fully flexible hash power acquisition), in equilibrium (14) implies that

$$
R(1 - f_m) = C\lambda e^{\rho R(1-f_m)} \frac{\lambda_m}{\Lambda_{pm}} \leq C\lambda e^{\rho R(1-f_m) / N} < C\lambda e,
$$

(22)

where the last inequality follows from Assumption 1. This implies that the RHS of (15), if positive, has negative partial derivative w.r.t. f_m. Therefore among pools having positive active mining, a pool charging a higher fee would have a smaller net growth $\frac{\lambda_m}{\Lambda_{pm}}$ in equilibrium.

\[\square\]
A3. Proof of Proposition 3

Proof. (The proof is incomplete) Equations (15) and (16) imply that the owner of a pool with a positive measure of active hash power maximizes

\[\pi_m = \frac{\Lambda_{pm}}{\Lambda(f_m)} (1 - e^{-\rho f_m}) \frac{\rho R(1 - f_m)}{\rho R(1 - f_m) + N \ln \frac{C A(f_m)}{R(1 - f_m)}} \]

(23)

There are two scenarios. First, as shown in Lemma 1, it is possible that in equilibrium there is one entrant pool with positive measure of active hash power. In this case, locally adjusting fees by incumbents does not change the \(\Lambda \). Therefore, the optimization for all incumbent pools with non-zero hash rate becomes optimizing,

\[(1 - e^{-\rho f_m}) \frac{\rho R(1 - f_m)}{\rho R(1 - f_m) + N \ln \frac{C A(f_m)}{R(1 - f_m)}} \]

(24)

which is independent of \(\Lambda_{pm} \). In other words, all incumbent pools charge the same fee. The proposition obviously holds.

The second scenario is that the incumbents' adjusting fees off-equilibrium moves \(\Lambda \). Using FOC w.r.t. \(f_m \) and taking into consideration that the \(\Lambda \) in the denominator of the RHS of (15) also depends on \(f_m \) (pool owners understand adjustment to pool fees alters the global hash power), we get

Let

\[y(f_m, \Lambda(f_m)) = \frac{\rho R(1 - f_m)}{\rho R(1 - f_m) + N \ln \frac{C A(f_m)}{R(1 - f_m)}} \]

(25)

then

\[\frac{\partial y}{\partial \Lambda} = -\frac{N}{\Lambda} \frac{\rho R(1 - f_m)}{[\rho R(1 - f_m) + N \ln \frac{C A(f_m)}{R(1 - f_m)}]^2} \]

(26)

and

\[\frac{\partial y}{\partial f_m} = -\frac{\rho R N (1 + \ln \frac{C A(f_m)}{R(1 - f_m)})}{[\rho R(1 - f_m) + N \ln \frac{C A(f_m)}{R(1 - f_m)}]^2} \]

(27)

Now the FOC of (23) w.r.t. \(f_m \) gives

\[0 = \frac{d\pi_m}{df_m} = \frac{\partial \pi_m}{\partial f_m} + \frac{\partial \pi_m}{\partial \Lambda} \frac{d\Lambda(f_m)}{df_m} \]

(28)

\[= \frac{\Lambda_{pm}}{\Lambda} \left[\rho R e^{-\rho f_m} y + (1 - e^{-\rho f_m}) \frac{\partial y}{\partial f_m} \right] + \Lambda_{pm} \left(1 - e^{-\rho f_m} \right) \left[\frac{1}{\Lambda} \frac{\partial \Lambda}{\partial f_m} \frac{d\Lambda(f_m)}{df_m} - \frac{y}{\Lambda^2} \frac{d\Lambda(f_m)}{df_m} \right] \]

(29)

\[= \frac{\Lambda_{pm} \rho R}{\Lambda} \left[e^{-\rho f_m} \rho R (1 - f_m) \left[\rho R (1 - f_m) + N \ln \frac{C A(f_m)}{R(1 - f_m)} \right] - (1 - e^{-\rho f_m}) \left[N + N \ln \frac{C A(f_m)}{R(1 - f_m)} \right] \right] \]

\[- \frac{\Lambda_{pm}}{\Lambda^2} (1 - e^{-\rho f_m}) \rho R (1 - f_m) \left[N + \rho R (1 - f_m) + N \ln \frac{C A(f_m)}{R(1 - f_m)} \right] \]

\[\left[\rho R (1 - f_m) + N \ln \frac{C A(f_m)}{R(1 - f_m)} \right]^2 \]

\[\cdot \frac{d\Lambda(f_m)}{df_m} \]

(30)

From here, we get

\[-\frac{1}{\Lambda} \frac{d\Lambda(f_m)}{df_m} = \frac{N \left(1 + \ln \frac{C A(f_m)}{R(1 - f_m)} \right) - e^{-\rho f_m} \rho R (1 - f_m) \left[\rho R (1 - f_m) + N \ln \frac{C A(f_m)}{R(1 - f_m)} \right]}{(1 - f_m) \left[N + \rho R (1 - f_m) + N \ln \frac{C A(f_m)}{R(1 - f_m)} \right]} \]

(31)
We know that \(\Lambda = \sum_{n=1}^{M} \Lambda_{pn} \cdot y(f_n, \Lambda(f_n)) \equiv \sum_{n=1}^{M} \Lambda_{pn} \cdot y_n \). Therefore,

\[
\frac{d\Lambda}{df_m} = \sum_{n=1}^{M} \Lambda_{pn} \left[\frac{\partial y_n}{\partial \Lambda} \frac{d\Lambda}{df_m} + \frac{\partial y_n}{\partial f_m} \right] = \left[\sum_{n=1}^{M} \Lambda_{pn} \frac{\partial y_n}{\partial \Lambda} \right] \frac{d\Lambda}{df_m} + \Lambda_{pm} \frac{\partial y_m}{\partial f_m}
\]

(32)

The recursive formula gives

\[
\frac{d\Lambda}{df_m} = \frac{\Lambda_{pm}}{1 - \sum_{n=1}^{M} \Lambda_{pn} \frac{\partial y_n}{\partial \Lambda}} \frac{\partial y_m}{\partial f_m}
\]

(33)

Substituting (33) into (31) and rearrange, we get

\[
\Lambda \left[1 - \sum_{n=1}^{M} \Lambda_{pn} \frac{\partial y_n}{\partial \Lambda} \right] \Lambda_{pm} = \left[\rho R (1 - f_m) + N \ln \frac{CA}{m(1 - f_m)} \right]^2 (1 - f_m) \left[N + \rho R (1 - f_m) + N \ln \frac{CA}{m(1 - f_m)} \right] \cdot \left[1 - \rho R e^{-\rho R f_m} (1 - f_m) \frac{\ln \frac{CA}{R(1-f_m)} + \rho R (1 - f_m)}{\ln \frac{R(1-f_m)}{1-f_m} + 1} \right]
\]

(34)

Now \(\frac{\rho R N}{\Lambda [1 - \sum_{n=1}^{M} \Lambda_{pn} \frac{\partial y_n}{\partial \Lambda}]} \) is a constant in the cross-section of pools, therefore the LHS is linear and increasing in \(\Lambda_{pm} \).

Take two pools \(m = 1 \) and \(m = 2 \) charging interior values of fees, i.e., \(f_m \in (0, 1) \). Suppose \(\Lambda_{p1} > \Lambda_{p2} \) and \(f_1 \leq f_2 \). Then LHS of (34) is bigger for Pool 1. But the RHS of (34) is independent of \(\Lambda_{pm} \) and is increasing in \(f_m \) and is therefore weakly larger for Pool 2, we then have a contradiction. Therefore, if \(\Lambda_{p1} > \Lambda_{p2} \), it has to be \(f_1 > f_2 \) if the pools are charging interior fees. When they charge \(f_1 = f_2 = 0 \) or \(f_1 = f_2 = 1 \), it still holds that a larger pool does not grow disproportionally larger. The proposition follows.

\[\Box\]

A4. Proof of Proposition 4

Proof. First, we prove by contradiction that in equilibrium at most one pool enters. Suppose otherwise, then by a Bertrand argument all entrant pools charge zero fees, which would not render enough revenues with certainty equivalences exceeding the cost \(K \). A contradiction.

Given that at most one new pools enters, we argue that in equilibrium the new pool must be collecting a certainty equivalent of \(K \). If the pool collects more than \(K \), then another potential pool owner can deviate to enter and charges a lightly lower fee and make a positive net profit; if the pool owner collects less than \(K \), then it has a profitable deviation to not enter at all.

Denote the fee charged by the entry pool by \(f_E \), we have the following lemma.

Lemma 1 (Pool Entry). There exists a strictly positive cutoff \(\hat{K} \) greater than \(K \) such that when \(K \geq \hat{K} \), no new pool enters. When \(0 < K \leq \hat{K} \), at most one pool enters, charging an endogenous fee \(f_E \) so that it collects an uncertainty equivalent of \(K \).

Proof. Suppose this new entrant pool owner charges \(f_E \), the marginal benefit of allocating hash power to the pool is \(\frac{1}{\Lambda} R(1 - f_E) e^{-\rho R(1 - f_E)} \Lambda_{am} = \frac{1}{\Lambda} R(1 - f_E) e^{-\rho R(1 - f_E)} / N \). If \(\Lambda \) were so large that this is less than the marginal cost \(C \), no active miner joins which contradicts the new pool owner's entry decision. Therefore, in an equilibrium with new pool entry, \(f_E \) uniquely pins down \(\Lambda = \frac{1}{C} R(1 - f_E) e^{-\rho R(1 - f_E) / N} \), and

\[
\Lambda \geq \sum_{m=1}^{M'} (\Lambda_{am} + \Lambda_{pm}) = \sum_{m=1}^{M'} \max \{ \Lambda_{pm}, \frac{\rho R(1 - f_m) \Lambda_{pm}}{\rho R(1 - f_m) + N \ln [CA] - N \ln [R(1 - f_m)]} \}
\]

(35)
where the last equality follows from (15).

In fact, pool owners choose fees to maximize

\[
\Lambda_{pm} \cdot \frac{1 - e^{-\rho R f_m}}{\rho \Lambda} \left[1 + \max \left\{ 0, \frac{N \ln[R(1 - f_m)] - N \ln[CA]}{\rho R(1 - f_m) + N \ln[CA] - N \ln[R(1 - f_m)]} \right\} \right].
\]

(36)

We note that this optimization completely separates \(\Lambda_{pm} \) and \(f_m \). Therefore, the optimal fee charged by all pools are the same and is independent of \(\Lambda_{pm} \), which we denote by \(f_I(\Lambda) \). Then (35) simplifies to

\[
\Lambda \geq \left(\sum_{m=1}^{M^I} \Lambda_{pm} \right) \max \left\{ 1, \frac{\rho R(1 - f_I)}{\rho R(1 - f_I) + N \ln[CA] - N \ln[R(1 - f_I)]} \right\}.
\]

(37)

The entrant derives a utility of

\[
u_E(f_E) \equiv \frac{\Lambda_{aE}(f_E)}{\rho \Lambda(f_E)} (1 - e^{-\rho R f_E}) = \frac{\Lambda(f_E) - \sum_{m=1}^{M^I} (\Lambda_{am} + \Lambda_{pm})}{\rho \Lambda(f_E)} (1 - e^{-\rho R f_E})
\]

(38)

\[
= \frac{(1 - e^{-\rho R f_E})}{\rho \Lambda(f_E)} \left[\Lambda(f_E) - \left(\sum_{m=1}^{M^I} \Lambda_{pm} \right) \max \left\{ 1, \frac{\rho R(1 - f_I)}{\rho R(1 - f_I) + N \ln[CA(f_E)] - N \ln[R(1 - f_I)]} \right\} \right]
\]

We note that the expression is continuous and well-behaved in \(f_E \), and its optimization over the bounded support \(f_E \in [0, 1] \) subject to the constraint of (37) has a maximum that is bounded above by \(\frac{1}{\rho} (1 - e^{-\rho R}) \).

We denote the maximum by

\[
u(\hat{K}) \equiv \max_{f_E} \nu_E(f_E).
\]

(39)

For \(K > \hat{K} \), no new pool enters because an owner cannot recover the entry cost \(K \); for \(K \leq \hat{K} \), a new pool owner enters and charges an \(f_E \) such that the certainty equivalence from the mining revenue exactly equals \(K \). Again due to the continuity of (38) in \(f_E \) and the fact that (38) attains zero when \(f_E = 0 \), for any \(K \leq \hat{K} \) there exists a feasible fee \(f_E \) the entrant can charge in equilibrium to recoup the entry cost \(K \). The break-even condition for the entrant pool is exactly

\[
\frac{(1 - e^{-\rho R f_E})}{\rho \Lambda(f_E)} \left[\Lambda(f_E) - \left(\sum_{m=1}^{M^I} \Lambda_{pm} \right) \max \left\{ 1, \frac{\rho R(1 - f_I)}{\rho R(1 - f_I) + N \ln[CA(f_E)] - N \ln[R(1 - f_I)]} \right\} \right] = \nu(K).
\]

(40)

This said, it could be the case that for such an \(f_E \), the incumbents charge fees to attract active hash power exceeding the supposedly fixed \(\Lambda \), which implies this would not be an equilibrium. As such, when \(K \) is sufficiently small, there could be entry but is not guaranteed in general.

The extreme case of \(K = 0 \) could in principal result in an arbitrary number of new pools, but the equilibrium allocation is equivalent to only one entry pool (one can combine all entry pools with zero fees into one as shown in Proposition 1).

The lemma tells us that there are only two situations we need to examine: (1) with sufficiently high \(K \), there is no entry and we have \(M = M^I \) pools; otherwise, (2) we have \(M = M^I + 1 \) pools, with a global hash power determined by the entrant pool’s fee charged to break even, taking the equilibrium fees charged by other pools as given.

We can characterize the resulting equilibrium of \(K = 0 \) in a fairly clean way. The global hash rates are pinned down by setting \(f_E = 0 \) in Eq. (38), so that \(\Lambda = \frac{R}{\rho} e^{-\rho R/N} \). Given this, Eq. (17) gives the strictly positive equilibrium fee \(f_I(\Lambda) \) charged by all incumbent pools. This fee in turn pins down the hash rates.
going to the incumbent pools using Eq. (??), and the rest is attracted by the entry pool. We note that the equilibrium risk-sharing allocation is distorted by the strictly positive fees \(f_I(\Lambda) > 0 \) charged incumbent pools, which inefficiently pushes more active hash rates toward the zero-fee entry pool relative to the optimal risk sharing benchmark (absent of fees).

Without new pool entry, the maximum global hash power satisfies

\[
\Lambda = \left(\sum_{m=1}^{M_I} \Lambda_{pm} \right) \frac{\rho R}{\rho R + N \ln(C\Lambda) - N \ln R}
\]

(41)

Therefore, for sufficiently low \(\sum_{m=1}^{M_I} \Lambda_{pm} \), the marginal benefit of allocating \(\lambda_m \) to a pool charging zero fee is \(\frac{1}{\Lambda} Re^{-\rho R \frac{\lambda_m}{\Lambda_{pm}}} \) exceeds the marginal cost \(C \), so the pool owner can always charge a positive fee and get a positive measure of active hash power.

Now with new pool entry, suppose an incumbent pool charges zero fees, then the marginal benefit of allocating some hash power to it satisfies the following when \(\lambda_m \) is sufficiently small.

\[
\frac{R}{\Lambda} e^{-\rho R \frac{\lambda_m}{\lambda_m + \lambda_{pm}}} > \frac{R}{\Lambda} e^{-\rho R \frac{1-f_E}{1}} = \frac{C}{1-f_E} > C
\]

(42)

Therefore, in equilibrium there is always positive allocation to the pool. As such, the pool owner can always charge a positive pool fee and still gets positive measure of active hash power.

Now with free entry, \(f_E = 0 \) in equilibrium, and \(\Lambda = \frac{R}{C} e^{-\rho R/N} \). Because incumbents charge positive fees, the active miners do not allocate the efficient amount of hash power to them.

\[\square\]
Appendix B: A List of Mining Pool Fee Types

Source: Bitcoin Wiki.

- CPPSRB: Capped Pay Per Share with Recent Backpay.
- DGM: Double Geometric Method. A hybrid between PPLNS and Geometric reward types that enables an operator to absorb some of the variance risk. Operator receives portion of payout on short rounds and returns it on longer rounds to normalize payments.
- ESMPPS: Equalized Shared Maximum Pay Per Share. Like SMPSS, but equalizes payments fairly among all those who are owed.
- POT: Pay On Target. A high variance PPS variant that pays on the difficulty of work returned to pool rather than the difficulty of work served by pool.
- PPLNS: Pay Per Last N Shares. Similar to proportional, but instead of looking at the number of shares in the round, instead looks at the last N shares, regardless of round boundaries.
- PPLNSG: Pay Per Last N Groups (or shifts). Similar to PPLNS, but shares are grouped into shifts which are paid as a whole.
- PPS: Pay Per Share. Each submitted share is worth certain amount of BC. Since finding a block requires shares on average, a PPS method with 0 variance.
- PROP: Proportional. When block is found, the reward is distributed among all workers proportionally to how much shares each of them has found.
- RSMPPS: Recent Shared Maximum Pay Per Share. Like SMPSS, but system aims to prioritize the most recent miners first.
- SCORE: Score based system: a proportional reward, but weighed by time submitted. Each submitted share is worth more in the function of time t since start of current round. For each share score is updated by: score += exp(t/C). This makes later shares worth much more than earlier shares, thus the miners score quickly diminishes when they stop mining on the pool. Rewards are calculated proportionally to scores (and not to shares). (at slushs pool C=300 seconds, and every hour scores are normalized)
- SMPSS: Shared Maximum Pay Per Share. Like Pay Per Share, but never pays more than the pool earns.
Table 3: **Selected Pool Reward Contracts**

<table>
<thead>
<tr>
<th>Name</th>
<th>Reward Type</th>
<th>Transaction fees</th>
<th>Prop. Fee</th>
<th>PPS Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>AntPool</td>
<td>PPLNS & PPS</td>
<td>kept by pool</td>
<td>0%</td>
<td>2.50%</td>
</tr>
<tr>
<td>BTC.com</td>
<td>FPPS</td>
<td>shared</td>
<td>4%</td>
<td>0%</td>
</tr>
<tr>
<td>BCMonster.com</td>
<td>PPLNS</td>
<td>shared</td>
<td>0.50%</td>
<td></td>
</tr>
<tr>
<td>Jonny Bravo’s</td>
<td>PPLNS</td>
<td>shared</td>
<td>0.50%</td>
<td></td>
</tr>
<tr>
<td>Slush Pool</td>
<td>Score</td>
<td>shared</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>BitMinter</td>
<td>PPLNSG</td>
<td>shared</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>BTCC Pool</td>
<td>PPS</td>
<td>kept by pool</td>
<td></td>
<td>2.00%</td>
</tr>
<tr>
<td>BTCDig</td>
<td>DGM</td>
<td>kept by pool</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>btcmp.com</td>
<td>PPS</td>
<td>kept by pool</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Eligius</td>
<td>CPPSRB</td>
<td>shared</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>F2Pool</td>
<td>PPS</td>
<td>kept by pool</td>
<td></td>
<td>3%</td>
</tr>
<tr>
<td>GHash.IO</td>
<td>PPLNS</td>
<td>shared</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Give Me COINS</td>
<td>PPLNS</td>
<td>shared</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>KanoPool</td>
<td>PPLNSG</td>
<td>shared</td>
<td>0.90%</td>
<td></td>
</tr>
<tr>
<td>Merge Mining Pool</td>
<td>DGM</td>
<td>shared</td>
<td>1.50%</td>
<td></td>
</tr>
<tr>
<td>Multipool</td>
<td>Score</td>
<td>shared</td>
<td>1.50%</td>
<td></td>
</tr>
<tr>
<td>P2Pool</td>
<td>PPLNS</td>
<td>shared</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>MergeMining</td>
<td>PPLNS</td>
<td>shared</td>
<td>1%</td>
<td></td>
</tr>
</tbody>
</table>

Source: Bitcoin wiki
Appendix C: Outcomes under Fixed Active Hashrates

We now analyze the case wherein miners cannot easily adjust the computation power in the short-run and there is also no new pool entry. Our key findings regarding pool size distribution remain robust.

Suppose each miner is endowed with a total hash power \(\lambda_a \), then the active miner’s problem becomes an optimal allocation of hash power into the \(M \) pools:

\[
\max_{\lambda_m \geq 0} \frac{1}{\Lambda} \left[\sum_{m=1}^{M} (\Lambda_{am} + \Lambda_{pm}) \left(1 - e^{-\frac{\rho R (1-f_m)}{\Lambda_{am} + \Lambda_{pm}}} \right) \right], \tag{43}
\]

subject to the budget constraint

\[
\sum_{m=1}^{M} \lambda_m = \lambda_a. \tag{44}
\]

Now \(\Lambda = \sum_{m=1}^{M} (\Lambda_{am} + \Lambda_{pm}) = N\lambda_a + \sum_{m=1}^{M} \Lambda_{pm} \) is a constant. We further adapt Assumption 2 to \(\rho C (\sum_m \Lambda_{pm} + N\lambda_a) > 1 - e^{-\rho R} \) which rules out solo-mining.

Given \(\{\Lambda_m\}_{m=1}^{M} \) and the fee charged by other pools \(f_{-m} \), the \(m \)-pool manager chooses \(f_m \) to maximize

\[
\max_{f_m} [\Lambda_{am}(f_m, f_{-m}) + \Lambda_{pm}] \left(1 - e^{-\rho R f_m} \right), \tag{45}
\]

where \(\hat{f}_m = \hat{f}(\lambda_m, \Lambda_{pm}, f_m) = \left[\frac{\Lambda_{am}}{\Lambda_{am} + \Lambda_{pm}} f_m + \frac{\Lambda_{pm}}{\Lambda_{am} + \Lambda_{pm}} \alpha(f_m) \right] \). Again, we set \(\alpha(f) = f \) for easier exposition; the proofs all go through with general \(\alpha(f) \).

Proposition 2 extends to the current setting.

Proposition 5. In any equilibrium with \(M \) pools, for any two pools \(m \) and \(m' \),

1. If \(f_m = f_{m'} \), then \(\frac{\lambda_m}{\Lambda_{pm}} = \frac{\lambda_{m'}}{\Lambda_{pm'}} \);
2. If \(f_m > f_{m'} \), then we have \(\frac{\lambda_m}{\Lambda_{pm}} \leq \frac{\lambda_{m'}}{\Lambda_{pm'}} \). If in addition \(\lambda_{m'} > 0 \), then \(\frac{\lambda_m}{\Lambda_{pm}} < \frac{\lambda_{m'}}{\Lambda_{pm'}} \).

Proof. An active miner optimizes

\[
\sum_{m=1}^{M} (\Lambda_{am} + \Lambda_{pm}) \left(1 - e^{-\frac{\rho R (1-f_m)}{\Lambda_{am} + \Lambda_{pm}}} \right) \tag{46}
\]

In equilibrium, the marginal benefit of allocating hash rate to pool \(m \) is

\[
\frac{1}{\Lambda} R (1-f_m) e^{-\rho R (1-f_m) \frac{\lambda_m}{\Lambda_{am} + \Lambda_{pm}}} \tag{47}
\]

where we have used \(\Lambda_{am} = N\lambda_m \) in equilibrium. Expression (47) is decreasing in \(f_m \) if \(\rho R (1-f_m) \frac{\lambda_m}{\Lambda_{am} + \Lambda_{pm}} < 1 \). One sufficient condition is simply \(\rho R < N \), which holds by Assumption 1.

Therefore, if \(\frac{\lambda_m}{\Lambda_{pm}} > \frac{\lambda_{m'}}{\Lambda_{pm'}} \geq 0 \) and \(f_m > f_{m'} \), (47) must be higher for pool \(m' \), which implies the miner is better off allocating some marginal hash power from pool \(m \) to pool \(m' \) (which is feasible because \(\lambda_m > 0 \)), contradicting the fact this is an equilibrium. If in addition \(\lambda_{m'} > 0 \), then \(\frac{\lambda_m}{\Lambda_{pm}} \geq \frac{\lambda_{m'}}{\Lambda_{pm'}} \geq 0 \) would also lead to a contradiction, yielding \(\frac{\lambda_m}{\Lambda_{pm}} < \frac{\lambda_{m'}}{\Lambda_{pm'}} \). □

In addition, the first statement in the proposition concerns a *Distribution Invariance in Equal-Fee Group*, which implies that without heterogeneous fees, we should not expect pool distribution to grow more dispersed or concentrated. Keep in mind that this property holds as well in our baseline case with adjustable computation power.
To see this, note that from the first part of Proposition 5, we know $-\rho R \frac{\lambda_m}{N \lambda_m + \Lambda}$ is equal among pools charging the same fee. Replacing $-\rho R/N$ with it in the the proof of Proposition 1, then the same argument leads to that only the fee and the initial aggregate size of this group of pools matter for the active miners’ allocation of hash power to this group.

Corollary 2. Suppose that in equilibrium there is a group G of pools charging the same fee f. Then these pools grow at the same rate which is determined by f. The aggregate active hash power attracted to the group, $\sum_{m \in G} \Lambda m$, depends on $\{\Lambda pm, m \in G\}$ only through the pools’ aggregate passive hashrate $\sum_{m \in G} \Lambda pm$.

Proof. Among the group of pools charging the same fee f, suppose the total allocation is A, then because (47) is strictly decreasing in $\frac{\lambda m}{\lambda pm}$, we have $\frac{\lambda m}{\lambda pm}$ being identical $\forall m$ in this group. Therefore,

$$\lambda_m = \frac{\hat{\lambda}_m}{\sum_{m' \in Group} \Lambda pm'} \Lambda pm.$$ \(48\)

for low enough f, and zero otherwise.

Then suppose for two particular distribution of $\{\Lambda pm\}$, $\hat{\lambda}_m' > \hat{\lambda}_m''$, then $A(\hat{\lambda}_m') > A(\hat{\lambda}_m'')$, which implies that

$$\frac{1}{\hat{\lambda}_m} R(1 - f)e^{-\rho R(1 - f) \frac{\lambda m}{N \lambda m + \Lambda}} = C$$

cannot hold for both $\hat{\lambda}_m'$ and $\hat{\lambda}_m''$. This contradiction leads to the conclusion that the aggregate active hash power attracted must equal for any two distributions and only depends on the fee f charged. \square

In other words, the exact distribution of pool size for a group of pools with the same aggregate passive size, if they are charging the same fees in equilibrium, is irrelevant for the aggregate active hash power attracted to that group.

Pool sizes and fees. In equilibrium the first-order condition from the miner’s optimization defines a shadow price η, so that if $\lambda_m > 0$ then

$$\eta = \rho R(1 - f_m) e^{-\rho R(1 - f_m) \frac{\lambda m}{N \lambda m + \Lambda pm}},$$

We focus on the case where $\lambda_m > 0, \forall m$.\(^{28}\) At the same time $\sum_{m=1}^M \lambda_m = \lambda_a$. Denote the solution as $\eta^*(f_m, \Lambda pm, m = 1, 2, \ldots, M)$. Then the pool owner m’s optimization can be transformed into

$$\max_{f_m} \frac{\rho R(1 - f_m)}{\rho R(1 - f_m) + N \ln \eta^* - N \ln[\rho R(1 - f_m)]} \left(1 - e^{-\rho R f_m}\right),$$

Before discussing the general case, let us first examine the case of $M = 2$ for analytical solutions and basic intuition.

A two-pool example. Suppose there are only two pools.

Proposition 6. In an equilibrium whereby active miners only allocate hash rates between two pools (Pools 1 and 2), $\Lambda p_1 \geq (>) \Lambda p_2$ implies $f_1 \geq (>) f_2$ in equilibrium.

Proof. We only discuss the \geq case because the $>$ case is almost identical. We use proof by contradiction. Suppose that $\Lambda p_1 \geq \Lambda p_2$ but $f_1 < f_2$.

\(^{28}\)If the constraint $\lambda_m = 0$ is binding then there is another Lagrange multiplier for this constraint.
Recall that \(\hat{f}_m = \hat{f}(\lambda_m, \Lambda_m, \hat{f}_m) = \left[\frac{N\lambda_m}{N\lambda_m + \lambda_m} f_m + \frac{\lambda_m}{N\lambda_m + \lambda_m} \alpha(f_m) \right] \). From Proposition 5, \(f_1 < f_2 \) implies \(\frac{N\lambda_1}{N\lambda_1 + \Lambda_{p1}} \geq \frac{N\lambda_2}{N\lambda_2 + \Lambda_{p2}} \). Given that \(\alpha(f) \geq f \) and is weakly increasing in \(f \), one can easily show that \(\hat{f}_1 < \hat{f}_2 \).

Now no deviations from equilibria gives

\[
(\Lambda_1 + \Lambda_{p1}) (1 - e^{-\rho R f_1}) \geq \left(\frac{\Lambda_{p1} A_A}{\Lambda_{p1} + \Lambda_{p2}} + \Lambda_{p1} \right) \left(1 - e^{-\rho R f_2} \right)
\]

\[
(\Lambda_2 + \Lambda_{p2}) (1 - e^{-\rho R f_2}) \geq \left(\frac{\Lambda_{p2} A_A}{\Lambda_{p1} + \Lambda_{p2}} + \Lambda_{p2} \right) \left(1 - e^{-\rho R f_1} \right),
\]

where \(\Lambda_{A1} \) and \(\Lambda_{A2} \) are the total allocation from all active miners to pool 1 and 2 when they charge equilibrium fees \(f_1 \) and \(f_2 \), respectively. Notice that \(N\lambda_1 + N\lambda_2 = \Lambda_A \), we thus get

\[
(\Lambda_A + \Lambda_{p1} + \Lambda_{p2}) \geq \left(\frac{\Lambda_{p1} A_A}{\Lambda_{p1} + \Lambda_{p2}} + \Lambda_{p1} \right) \frac{1 - e^{-\rho R f_2}}{1 - e^{-\rho R f_1}} + \left(\frac{\Lambda_{p2} A_A}{\Lambda_{p1} + \Lambda_{p2}} + \Lambda_{p2} \right) \frac{1 - e^{-\rho R f_1}}{1 - e^{-\rho R f_2}}
\]

Factoring out \(\Lambda_A + \Lambda_{p1} + \Lambda_{p2} \) and multiply \(\Lambda_{p1} + \Lambda_{p2} \) on both sides we have

\[
\Lambda_{p1} + \Lambda_{p2} \geq \Lambda_{p1} \frac{1 - e^{-\rho R f_2}}{1 - e^{-\rho R f_1}} + \Lambda_{p2} \frac{1 - e^{-\rho R f_1}}{1 - e^{-\rho R f_2}},
\]

which cannot possibly hold because \(\hat{f}_2 > \hat{f}_1 \) and \(\Lambda_{p1} \geq \Lambda_{p2} \).

Proposition 6 implies that a (weakly) larger pool charges a (weakly) higher fee. The main intuition again derives from the arms-race effect and market power. When the pool managers decide on their fees, they are facing a demand curve aggregated from individual active miners’ allocation problem under their budget constraint. Intuitively, a larger pool with a bigger \(\Lambda_{pm} \) provides greater diversification benefit, thus faces a less elastic demand curve. This implies that an active miner still wants to allocate significant amount of hash rates to it despite the higher fee charged by the larger pool, giving rise to our claimed result.

Combined with Proposition 5, the result that \(\Lambda_{p1} > \Lambda_{p2} \) leads to \(\frac{\Lambda_{p1}}{\Lambda_{p1}} \leq \frac{\Lambda_{p2}}{\Lambda_{p2}} \), i.e., a larger pool has a lower growth rate. Therefore, the market power of mining pools creates a natural force that prevents larger pools from becoming more dominant.

Dominant pools and equilibrium fees. Relating to the concern of “51% attack” by a dominant pool, we also analyze a case where one larger pool dominates other pools of similar size.

Proposition 7. If \(\Lambda_{p1} > \Lambda_{p2} = \Lambda_{p3} = \cdots = \Lambda_{pM} \), then in a symmetric equilibrium \(f_1 > f_m, \forall m = 2, 3, \cdots, M \). As a result, the largest pool 1 grows slower than the rest of pools.

Proof. In a symmetric equilibrium pool 2 through \(M \) charge the same fee. We denote it by \(f_2 \) and prove the proposition by contradiction. Similar to Proposition 6, suppose \(f_1 \leq f_2 \), then for \(m = 2, \cdots, M \), the following holds.

\[
(\Lambda_{p1} + \Lambda_{p1}) (1 - e^{-\rho R f_1}) \geq \left(\frac{\Lambda_{p1} A_A}{\Lambda_{p1} + (M - 1)\Lambda_{p2}} + \Lambda_{p1} \right) \left(1 - e^{-\rho R f_2} \right)
\]

\[
(\Lambda_{p1} + \Lambda_{pm}) (1 - e^{-\rho R f_2}) \geq \left(\frac{\Lambda_{pm} A_{1/m}}{\Lambda_{p1} + \Lambda_{pm}} + \Lambda_{p2} \right) \left(1 - e^{-\rho R f_1} \right)
\]

\[
\geq \left(\frac{\Lambda_{p1} A_{p1}}{\Lambda_{p1} + (M - 1)\Lambda_{p2}} + \Lambda_{p2} \right) \left(1 - e^{-\rho R f_1} \right),
\]

C-3
Equilibrium fees f_i's and the pool growth rate $\Lambda_{pi}/\Lambda_{pi}$'s, $i \in 1, 2, 3$, are plotted against miner risk aversion ρ. The baseline parameters are: $R = 1 \times 10^5$, $\lambda_a = 5 \times 10^4$, $N = 50$, $\Lambda_{p1} = 5 \times 10^5$, $\Lambda_{p2} = 3 \times 10^5$, $\Lambda_{p3} = 1 \times 10^5$ and $\rho \in [1 \times 10^{-5}, 3 \times 10^{-5}]$.

where the last inequality follows from that $\Lambda_{1\&m}$ is the total miner allocation to pool 1 and pool m when they both charge f_1, and is therefore larger than $\frac{\Lambda_{p1} + \Lambda_{pm}}{\Lambda_{p1} + (M-1)\Lambda_{p2}}$ because as a group, pool 1 and pool m gets an overall allocation as if they are charging a lower fee than the rest of the pools.

Then following the same argument as in the proof of Proposition 6, we arrive at a contradiction. Therefore, $f_1 > f_2$.

The proposition shows that even with M pools, if one pool dominates and other pools are of similar size, then the dominant pool would charge a higher fee and grow at a slower rate. In fact, the proof equally applies to the scenario whereby there are two classes of pool, one with larger size and one with smaller size. The former always charge higher fees and grow at a slower rate.

Numerical illustrations of general cases. We present the numerical solution in Figure 5 for the general case of $N = 3$, with $\Lambda_{p1} > \Lambda_{p2} > \Lambda_{p3}$. Again, due to the same economic forces that we explained in the earlier section with two pools or a large dominant pool, Figure 5 illustrates that the equilibrium pool fee increases in pool size, and larger pools grow slower.